UNIT I - MATRICES

Introduction

Matrices have become an important tool in the study of science and engineering. Particularly it have
been found great utility in the theory of electrical circuits, mechanics, cryptography etc. The evolution
of computers have facilited the wide use of matrices in applied mathematics. We confine ourselves to
the study of eigenvalue problems.

A set of mn numbers (real or imaginary) arranged in a rectangular array of m rows and n columns is

called an mxn Matrix. It is usually written as 4 =(a;) Then mxn is said to tbe order of the

mxn "

matrix A.

|

3 j is a matrix of order 2x3.

—_— W N

1 3
Example: 4=|2 1 | is a matrix of order 3x3. A4 =(
3 2

The sum of the elements in the principal diagonal of a square matrix is called the trace of the matrix.

—_— W N

1 3
Example: If 4=|2 1 |, then trace of the matrix is 1+3+2 = 6.
3 2

A square matrix 4 is symmetricif 4" =4 and skew symmetricif 4" =-4

Example for symmetric matrix: Example for skew-symmetric matrix:
A=|2 3 1 A=(-1 0 3
3 1 2 2 -3 0

The matrix obtained from a given matrix 4 by interchanging rows and columns is called the
transpose of 4 and is denoted by 4" .

0 1 =2 0 -1 2
Example: fA=(-1 0 3 |thenAT=|1 0 -3}
2 -3 0 -2 3 0

Some Properties of Matrices:

1. The non singular matrix 4 is symmetric then 4" is also symmetric.

2. A square matrix of order n is said to be orthogonal if 44" = A"4=1, . Then AT = A™1,
3. If 4 is orthogonal, then A isnon singular.

4. If A isan orthogonal matrix, then 4", 4™ are also orthogonal matrix.

5. A square matrix A is said to be singular if | 4 |=0. and it is called non singular if | 4 |# 0
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0o 1 =2
Example: Let A=|—-1 0 3 |

2 -3 0
0 1 -2
Then |[A|=|-1 0 3[=000+9)—-1(0-6)—-2(3-0)=6-6=0.
2 -3 0

Hence A is singular.

Example: LetA = (; i)

112, .
Then|A|—|3 4|_4 6=—2%0.
Hence A is non singular.

Suppose A isanon singular matrix of order n. If there exists a matrix B such that AB=BA=1,

then B is called the multiplicative inverse of 4 and it is denoted by B= 4" where

» 1
A =— Adj(4)

| A|
Rank of a Matrix

If A is a matrix of order mxn, then the rank of A is said to be ‘1’ if (i) there exists at least one minor
of order T which does not vanish (ii) every minor of order (r+1) or higher orders vanish. Clearly
#(4)<(m,n). ie.the rank of the matrix is the largest of the order of all non vanishing minors of A.

Another method to find the rank

Reduce A to any one of the forms [7,], [7.] 0], [%’] 16 8] by a series of elementary operations on A

and then find the order of the unit matrix contained in the normal form of A. Elementary operations
are (i) interchange of any two rows(or columns) (ii) multiplication of any row(or column) by a non

zero scalar (iii) addition of any row(or column), the same scalar multiplies of any other row(or

column).
1 2 3
Example: Find therankof 4={2 3 1
31 2
1 23
|A|:2 3 1|=1(6-1)-2(2-9)+3(2-9)=-2=0.
31 2

Therefore r(A) =3
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2 3 4
Example: Find therankof 4=| 3 1 2.
-1 2 2
2 3 4
|4=[3 1 2/=2(2-4)-3(4+2)+4(6+1)=0. Therefore r{4)=3
-1 2 2

4
But there is at least one non zero minor 5 #0 Therefore r(A)=2.

The Characteristic Equation and Characteristic Root of a Matrix

Let A be a square matrix of order n and A be any scalar. Then the equation | A— A7 |=0 is called

characteristic equation of 4 with degree n. The roots of this equation are called characteristic roots
or latent roots or eigenvalues of 4.

Let A be a square matrix. If there exists a non zero column vector X and a scalar A such that
AX =AX ,then X is called the eigenvector corresponding to the eigen value A.

Remark:
If all the eigenvalues are distinct then the corresponding eigenvectors are linearly independent.

If two or more eigenvalues are equal then the eigenvectors may be linearly dependent or
independent.

For a given one eigenvalue, we can have more than one eigenvectors. i.e. kX is also a solution.
Properties of Eigenvalues

Sum of the eigenvalues of a square matrix 4 is the sum of diagonal elements of 4.

Product of eigenvalues of a square matrix 4 is the value of determinant of 4.

The eigenvalues of A4 and its transpose 4" are the same.

The eigenvalues of a triangular matrix or diagonal matrix are precisely the diagonal elements of
the matrix.

The eigenvalue of k4 are k times the eigenvalue of A4, k being a scalar.

B W N

If A isthe eigenvalue of 4,then A* is the eigenvalue of 4*, k is a positive integer.
The eigenvalues of a real symmetric matrix are real.

The eigenvectors corresponding to distinct eigenvalues of a real symmetric matrix are
orthogonal.

®N oG

1
9. If 4 is an orthogonal matrix, with eigenvalue A, then 7 is also an eigen value of 4

10. To a eigenvector of a matrix, there cannot correspond two different eigenvalues, but to a
eigenvalue there corresponds different eigenvectors.

11. Two matrices 4 and P' AP have same eigenvalues.
1
12. If A is anon singular matrix with eigenvalue A(# 0). Then 7 is an eigenvalue of 4™ and

A
u is an eigenvalue of adj( 4 ).
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Note 1: Let A be a 3x3 matrix. Then the expansion of characteristic equation |[A—AI| =0

becomes A°-S4°+S,4-S,=0 where
S, = sum of diagonal values of 4

S, = sum of minors of leading diagonal of A4
Sy = 4|

Note 2: Let 4 be a 2x2 matrix. Then the expansion of characteristic equation |A —AI| =0

becomes A* —S;A+S, =0  where
S, = sum of diagonal values of 4 and S, = |Al.

5 0 1
Example: Find the characteristic equationof 4={0 -2 0].
1 0 5

The characteristic equation of 4 is | 4A—A/|=0.
ie. ’-854°+S,A-8,=0 where
S, = sum of diagonal values of 4 =5-2+5=8
S, = sum of minors of leading diagonal of 4

5
1

1
5

5
0

+ +

2 0
1o 5

0
2‘:—10+24—10=4

S, =| A|=5(~10)+1(2) =48

. the characteristic equationis A’ —81° +41+48=0
Solved Problems

cos@ sind

1. Show that the matrix 4 = )
—sin@ cos@

] is orthogonal.

r cosf sind cosf —smnb
Ax A = X
—sin@ cosé sin@ cos@
B cos’ @+sin’ 0 —cos@sin@+sinHcos b
—sin@cos @+ cosBsin O sin® @+ cos’
(10
“lo 1

=1
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4|Page



Hence A4 is orthogonal

2. Find the eigenvalues and eigenvectors of A = (i _41)
The characteristic equation is |A — AI| = 0.
ie. A*—=S;A+S,=0 where

S, = sum of diagonal valuesof 4=2-1=1 and
S, =|Al= -2—-4=-6.

ie. > —1—6=0

ie. A+2)(A=3)=0
i.e. A = —2, A = 3 are the eigenvalues.

X
Consider the equation (A — A)X = 0 where X = (y)

ie. 2-Mx+4y=0
x+(-1-2M)y=0

When A = —2, the equations becomes When A = 3, the equations becomes

4x+4y =0 —Xx+4y =0

x+y=0 x—4y =0

Le. x =—y Le. x =4y

S wheny=1, x=-1 ~.wheny=1, x=4

. _(—1Y. . ) (4. .

Xy = ( 1 ) is the eigenvector. Xy = (1) is the eigenvector.
2 2 0

3. Find all the eigenvalues and eigenvectorsof 4=| 2 1 1

-7 2 -3

The characteristic equation of 4 is |A—-A7|=0
ie. 1’-854*+S,A-S,=0 where

S, = sum of diagonal values of 4=2+1-3=0
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S, = sum of minors of leading diagonal of 4

I 1 2 0] |2 2
= - +

2 3 =7 3] 2 1
=(-3-2)+(-6-0)+(2—-4)
=-5-6-2

=13

. the characteristic equation is 1’ 04> -131+12=0

By inspection A =1 isaroot, since =1-13+12=0.

By synthetic division, we have

A +A-12=0
(A=3)(A+4)=0
A=3, -4

S A=1,3, -4 are the eigenvalues

Consider the equations (4—A1)X =0

2-4 2
2 1-2
=7 2

S, = 4|
2 20
=2 1 1
-7 2 3
=2(-3-2)-2(-6+7)+0(4+7)
=-10-2
=-12
11 0 -13 12
0 1 1 -12
1 1 -12 0

0
1

Il
(e}

3-A)\z

2-D)x+2y+0z=0
2x+(1-A)y+z=0
—Tx+2y+(-3-1)z=0

Case (i) When A =1 the equations (4—A1)X =0
becomes

x+2y+0z=0
2x+0y+z=0
~Tx+2y—-4z=0

Solving the first and second equations, we have
X y z

Case (ii)) When A =3 the equations (4—-A1)X =0
becomes

—x+2y+0z=0
2x-2y+z=0
—Tx+2y—6z=0

Solving the first and second equations, we have
X _ y _ z
2-0 0+1 2-4

-2

*_ Y _Z
2 1
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*~ X,=| 1 |isan eigenvector. - X, =| 1 | isan eigen vector.

Case (iii) When A =—4 the equations (4—A/)X =0 becomes

6x+2y+0z=0
2x+5y+z=0
—Tx+2y+z=0
Solving the first and second equations, we have
X y z

2-0 0-6 30-4

*_J_Z

2 -6 26

1

. X, =| -3 | is an eigen vector.

13

5 0 1
4. Find all the eigenvalues and eigenvectorsof 4=|{0 -2 0.

1 0 5

The characteristic equation of 4 is |A—-A1|=0
ie. 1’-S4°+85,4-5,=0 where

S, = sum of diagonal values of 4 =5-2+5=8
S, = sum of minors of leading diagonal of 4

5
1

1
5

+

‘—2 0
= +

0 5

5 0
=-10+24-10=4
0 -2

S, =| A|=5(-10)+1(2) =48
AP =817 +41+48=0

By inspection A =-2 isaroot. since (—2)% —8(-2)2+4(-2)+48=-8-32—-8+48=0

By synthetic division, we have 9 1 -8 4 48
A —104+24=0 e M
(A=6)(A1-4)=0 T -10 48 0
A=4,6
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.. The eigenvalues of 4 are A=-2,4,6
X
Consider the equation (4—-A/)X =0 where X =| y
z
G5-Dx+0y+z=0
Ox+(—2-4)y+0z=0
x+0y+(5-4)z=0

Case (i): When A =-2, the simultaneous equations (4—A/)X =0 becomes

Tx+z=0 By cross multiplication rule
(0)y=0 x oy z
x+7z=0

Ol 7 40
0/5?251/50

L . . X_y _z . y_Z2
Solving first and third equation, we get —=——=— ie. —=—-=—
0 -48 0 0 1 0

0

.. the eigenvectoris X, =| 1

0

Case (ii): When A =4, the simultaneous equations (4—-A/)X =0 becomes
By cross multiplication rule

x+z=0 x y 5
- 0~ A1 1 . = 1~ A0
x+z=0
1 ;>§g 0 ;xéd 0 ;>§M 1
Solving first and second equation, we get — = = = ——
0-1 0-0 1-0

-1
.. the eigenvectoris X, = ( 0 )
1

Case (iii): When A =6, the simultaneous equations (4—-A4/)X =0 becomes

-x+z=0 By cross multiplication rule,
8y =0 X y z

0 1 -1 0
X
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Solving first and second equation, we get =Yz i.e. =22
-8 0 -8 1 0 1
1
.. the eigenvectoris X, =| 0
1
4 1 1
5. Find all the eigenvalues and eigenvectorsof 4=|1 4 1|.
1 1 4
The characteristic equation of 4 is |A—-A7|=0
ie. ’-S4°+85,4-5,=0 where
S, = sum of diagonal values of 4 =4+4+4=12
S, = sum of minors of leading diagonal of 4
4 11 4 1 4 1
= + + =15+15+15=45
1 4 |1 4 (1 4
S, =5 A=416-1)-1(4-1)+1(1-4)=60-3-3 =54
A =127 +454-54=0
By inspection A =3 isaroot. since (3)3 —12(3)2 +45(3) — 54 =27 —-108 + 135 —-54 =0
By synthetic division, we have
3 1 —12 45 —54
AP —91+18=0 ‘
0 3 27 54
(A-3)(1-6)=0
| 1 -9 18 0
A=3,6

.. The eigenvalues of 4 are 1=26,3,3

X
Consider the equation (4—-A/)X =0 where X =| y

z
A-Dx+y+z=0
x+(@4-A)y+z=0
X+y+(@-21)z=0

Case (i): When A =6, the simultaneous equations (4—-A/)X =0 becomes
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2x+y+z=0

2 0 g y ‘
xX—=2y+z=
g 1 1 -2 1
2 1 1 -2

Solving first and second equation, we get z- % = g ie. % = % = %

1
.. the eigenvectoris X, =| 1

1

Case (ii): When A =3, the simultaneous equations (4—A/)X =0 becomes

x+y+z=0
x+y+z=0
x+y+z=0

All the three equations are identical and sameasto x+y+z=0
.. two unknowns may be treated as parameters. Taking x=1, y=0, we get z=-1
Also taking x=0,y =1, we get z=-1
1 0
.. the eigenvectorsare X, =| 0 | and X, =| 1

-1 -1

Note: Though two of the eigenvalues are equal, the eigenvectors are linearly independent. It can be
seen from the fact that kX, +k, X, + kX, =0 when k =k, =k, =0

3 10 5
6. Find all the eigenvalues and eigenvectorsof 4= -2 -3 —4|.
3 5 7

The characteristic equation of 4 is |A—-A1|=0
ie. 1’-S4°+85,4-5,=0 where

S, = sum of diagonal values of 4=3-3+7=7
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S, = sum of minors of leading diagonal of 4

-3 -4/ 3 5 (3 10

= + +

5 71 B 7 -2 -3
=(-21+20)+(21-15)+(-9+20)
=—1+6+11

=16

Sy = 4]
3 10 5
=-2 -3 4
3 5 7
=3(-21+20)-10(-14+12)+5(-10+9)
=-3+20-5
=12

. the characteristic equationis 2’ —71> +164—-12=0

By inspection A =2 isaroot,
By synthetic division, we have

AP =51+6=0
(A=3)(A-2)=0
A=273

S A=3,2,2 are the eigenvalues
Consider the equations (4—-A1)X =0

3-4 10 5 X

2 3-4 -4 | yl=

3 5 T-A)\ z
B-A)x+10y+5z=0
—2x+(-3-A)y—4z=0
3x+5y+(7-1)z=0

Case (i) When A =3 the equations (4—-A1)X =0
becomes
Ox+10y+5z=0

—2x-6y—-4z=0
3x+5y+4z=0

Solving the first and second equations, we have

X _ y _ y4
—40+30 -10-0 0+20
X _ y _ z
~10 -10 20
-1
. X, =| -1/ is an eigenvector.

2

since 2° —7x2°+16x2-12=8-28+32-12=0.

2 1 -7 16 -12
0 2 -10 12
1 -3 6 0

Case (ii) When A =2 the equations
(A-AI)X =0 becomes

x+10y+5z=0
—2x-5y—-4z=0
3x+5y+5z=0

Solving the first and second equations, we have
X _ y _ z
—40+25 -10+4 -5+20

X . y _z
-15 -6 15

5

X, =X, =| 2
-5

simultaneous equation are distinct.

are the eigenvectors, as all the
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Note: Here two eigenvalues are equal and the eigen vectors are linearly dependent

6 2 2
7. Find all the eigenvalues and eigenvectorsof 4=| -2 3 —1].
2 -1 3

The characteristic equation of 4 is |A—-A7|=0

ie. ’-S4°+85,4A-5,=0 where

S, = sum of diagonal values of 4 =6+3+3=12

S, = sum of minors of leading diagonal of 4

3 -1 (6 2 |6 2

:‘_1 ; ‘+‘2 3‘+‘_2 3 ‘:8+14+14:36

S, = A=6(9-1)+2(—6+2)+2(2-6)=48—-8—-8=32
A —127+364-32=0

By inspection A =2 is aroot. since (2)® —12(2)? +36(2) —32=8—-48+72-32=0

By synthetic division, we have

2 1 —12 36 —32
2> —10A4+16 =0
0 2 - 20 32
(A-2)(1—8)=0
|' 1 —10 16 0
1=2,8

-

.. The eigenvalues of 4 are 1=38,2,2

X
Consider the equation (4—-A/)X =0 where X =| y

z
(6-A)x—-2y+2z=0

2x+B-A)y-z=0

2x—-y+(B3-4)z=0

Case (i): When A =8, the simultaneous equations (4—A7/)X =0 becomes
2x—-2y+2z=0
—2x-5y-z=0 X y z
2x—y—=5z=0 -7 >< 2 ><—2 K*—?
_— : -5 -1 -2 =9
Solving first and second equation, we get
X y z . X y z
_—= = — lL.e. —=—=—
12 -6 6 2 -1 1
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2
.. the eigen vectoris X, =| -1
1
Case (ii): When A =2, the simultaneous equations (4—-A4/)X =0 becomes
4x-2y+2z=0
2x+y—-z=0
2x-y+z=0

All the three equations are identical and sameasto 2x—y+z=0
.. two unknowns may be treated as parameters. Taking x=1, y=2,we get z=0

.. the eigenvector correspondingto A =2 is X, =

S N =

a
Assume that X, =| b | be the third eigenvector corresponding to 4 =2 such that

c
X, X] =0 and X,.X] =0

© a+2b=0 and 2a-b+c=0

2

a b ¢
Solving the equations, we get 5 = I = = and hence X, =|-1
=5

Problems based on properties of eigenvalues and eigen vectors

31 4
If 4={0 2 6|, whatare the eigenvalues of A9
0 0 5

Since 4 is an upper triangular matrix, the eigenvalues of 4 are the diagonal elements, say 3, 2, 5.

.. the eigenvalues of 4" are

D | —

b

N | =

9

W | —

a 4
Find a and b such that the matrix (1 b] has 3 and -2 as its eigenvalues.

By property of eigenvalues,

A+, =a+b and A4 A =ab—-4
3-2=a+b —6=ab—-4
a+b=1 ab=-2
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We know that (a—b)* =(a+b)’ —4ab
=1+8=9
a—b=13
Solving a+b=1 and a-b=3,weget a=2,b=-1

If the sum of two eigenvalues and trace of a 3x3 matrix 4 are equal, find |A|.

Given Ath - hthy+ A, and hence 4 =0

o AxAyx 2y =| 4]
ie. |4]=0
4 6 6
Two eigenvaluesof A= 1 3 2 | are equal and they are double the third. Find the
-1 -5 2

eigenvalues of A°.
By property, 4, + 4, + 4, =4+3-2=5

Giventhat 4 =4, and A, =24,

/12+/12+%=5
s
A, =2 andhence 4 =2, 4, =1

2 0 -1 2
Find the eigenvalueof 4=| 0 2 0 | whose eigenvectoris | 0
-1 0 2 -2

We know that AX =AX

4+0+2 21
0+0+0 |=| O
-24+0-4 21

i,e. 21=6 and -24A=-6

.. the eigenvalue of 4 is 4=3.

1(2 4
If A= ﬂ( 5 8]' find the eigenvalues of A.
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j 2 4
We know that 47" = Adj(4) . Giventhat 4'= 1
| A| 242 8

2 4 g8 —4
Comparing these two, we have Adj(4)= [ 5 8] and hence 4= ( 5 J

The characteristic equation of A is

§-1 4
=0
2-1

(8—A)2-A)+8=0
A —10A+24=0
(A—-6)(A—4)=0

.. the eigenvalues of Aare 1=4,6.

7 4 -4
7. One of the eigenvalueof 4={4 -8 -1

4 -1 -8

is —9. Find the other two eigenvalues.

Let A4, 4,, 4, are the eigen values of A.

Then A, + A, + A, =sum of diagonal elementsof 4 = -9

O+, +4=-9
A=—A e (1)
Also A A A, =] A|=7(64—1)—4(-32+4)—4(—4+32) =441
ﬂf5=%%:>49 —A}=—49 A =17
A=T, A, ==1

5 4
8. Ifthe eigenvalues of 4= (1 2} are 1, 6. Find the eigenvalues of 4"'and 4°

Since 0 is notan eigen value of 4, A isnon singular matrix and hence
A" exists.

1
Eigenvalues of 4™ are -,

1
Eigenvalues of 4* are 1°, 6

N =

1
9. Find the eigenvalues of 4’ if 4=|2
4

wn W O
N © O

Since A4 is a lower triangular matrix, the eigenvalues are the diagonal
elements. i.e. 1=1,3,6
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.. the eigenvalues of 4’ are I°, 3°, 6°.

1 13
10. Find the sum and product of eigenvalues of the matrix 4=|1 5 1 | without actually
311

finding the eigenvalues.

Trace of 4
1+5+1
7

By a property, sum of all eigenvalues of 4

Product of eigenvalue = | 4|
=1(5-1)-1(1-3)+3(1-15)
=4+2-42
= -36

-4 1
11. Find the eigenvalues of 24—/ if the the matrix 4 :( 3 2]

4-i 1
2-2

The characteristic equation is =0

8+4L+2L+2>=3=0
AP +64+5=0
(A+D)(A+5)=0

.. the eigen values of Aare A =-1,—5 and hence the eigen values of 2A are -2,-10

The eigen values of the identity matrix I are 1, 1

.. the eigen values of 2A-1 are -2-1, —-10-1 i.e. -3,-11

12. If 2,-1, 3 are the eigen values of a matrix A, then find the eigen values of A*=21.

Since 2, —1, 3 are the eigen values of a matrix A, the eigen values of 4* are 2°, (-1)* ,3’

Therefore the eigen values of 4> 27 are 2> -2, (-1)>-2 ,3*-2 ie 2, -1, 7.

I 0 O

13. If the product of two eigenvaluesof 4= 0 3 —1| is2, find the third eigenvalue.

0 -1 3

Let x,),z be the eigenvalues of A. By properties of eigenvalues,

X+y+z=1+3+3=7 ..(l) and xpz=| A|=8 ... (2)

2
Given that xy =2 and hence z=4. Also y=— ....... 3)
X

https://doi.org/10.5281/zenodo.15288051
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2
From (1), x+—+4=7
X

x> +4x+2="T7x
x> =3x+2=0
(x—-D(x-2)=0

x=1,2
s x=1Ly=2,z=4 are the eigenvalues

2 21
14. Two eigenvalues of the matrix 4=| 1 3 1| are equal to 1 each. Find the eigen values of A°.
1 2 2

Given that 1, 1, A are the eigenvalues of 4.
By a property, 1+1+41=2+3+2 = A=5
.. eigenvalues of 4 are 1, 1,5 and hence eigenvalues of 4’ are 1°,1°,5°.

1 1 3
15. One of the eigenvaluesof 4=|1 5 1 |is 6. Find the other two eigenvalues.
31 1

Let x,y,6 are the eigenvaluesof 4.
By properties of eigenvalues, x+y+6=1+5+1 and 6xy=| 4|

ie, x+y=1..() and xy=-6 ...(2)
6 : L 6
From (2), y=—-— . Usingthisin (1), we get x——=1
X X

X —x—6=0
(x+2)(x-3)=0
x=-2,3
.. the other two eigenvalues are -2, 3.

4 2
16. Determine which of the following vectors are eigenvector of 4 = [5 j . Also find the

5 -2
corresponding eigenvalue if any: X, =( j, X, :[ j

4 23\(-2 2 -2
Consider AX, :( j( ] :( j :—1( ] =1X,
5 1)\5 -5 5

. X, is the eigenvector corresponding to the eigenvalue A =-1.

But A4X, #AX, and hence X, is not an eigenvector.
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0 1 1
17.1f -1 and 2 are the eigen valuesof | 1 0 1 |, find the value of ‘a’.
a 1 0

We know that, Sum of eigen values = sum of Product of the eigen value = determinant value of

diagonal elements of the matrix the matrix
0 1 1
A+h+4=0+0+0 AxAxA=1 0 1
a 1 0
-1+24+4, =0
Dx2)x(-1)=-1(0—-a)+1(1-0)
A=-1 2=a+l

a=1

18. If the sum and product of eigen values of a 2x2 matrix A are 2 and -3 respectively,
compute the eigen values of A.

Let 4,4, are the eigen values of the matrix 4. Given that

A+A =2..(1)
A A =-3..(2)

From (1), 4,=2-4. From(2), 4(2-4)=-3
— A +22,+3=0
AP-22-3=0
(4+1)(4-3)=0
A=-1or A =3
S Af A==, 4, =2—(-1)=3

. . . 1, .
19. If A is an eigenvalue of an orthogonal matrix 4, show that 7 is also an eigenvalue of 4.
Let A be the eigenvalue of an orthogonal matrix 4. Since 4 is orthogonal, then 4" = 4™

By a property, % is an eigenvalue of 47'.

1
Therefore and 7 is an eigenvalue of A”.

Also, by a property, 4 and 4" have same eigenvalues.
Therefore and % is an eigenvalue of A.
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20. If /1 is an eigenvalue of a matrix 4, show that % is an eigenvalue of 47'..

If A isan eigenvalue of a matrix 4, then AX =41X.
Premultiply by 47", we have 4™ AX =147'. X
X=24"X
1 4
—X=4X
A

Therefore % is an eigenvalue of 4",

21. Prove that x° — ) +4z” +4xy+2yz +6xz is indefinite.

1 2 3
The matrix of the quadratic formis |2 -1 1
3 1 4
1 2
Here D, H1}=1, +ve Dzz‘z _1‘2—1—42—5,—\/6
1 2 3
D, =2 -1 1:1(—4—1)—2(8—3)+3(2+3)=—5—10+15=0
3 1 4

Since D, =+ve, D, =—ve, D, =0, the quadratic form is indefinite.

Exercise

1. Find the eigenvalues and eigenvectors of the following matrices:

2 2 -3 -1 2 -2 2 2 2 8 —6 2
@l2 1 -6 @1 2 1| @it 1 1| (@v)]|-6 7 -4
-1 =2 0 -1 -1 0 1 3 -1 2 -4 3
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1 6 1
2. Find all the eigen values and eigen vectorsof 4=|1 2 0.
0 0 3
2 0 4
3. Find the eigenvalues and eigen vectors of the matrix 4={0 6 0
4 0 2

4. Show that the matrix A = l L2 1/\5] is orthogonal.
-1/N2 142
5 4
5. Find the eigenvalues and eigenvectors of 4 = (1 2).

o

1 0 0
If 4= (2 3 O), what are the eigen values of 4°?
4 5 6

7. Find aandb such that the matrix (a

> b ) has 3 and 2 as its eigen values.

8. If the sum of two eigen values and trace of a 3x3 matrix 4 are equal, find the product of all its
eigen values.

4 1 1
9. Two eigenvaluesof A=|1 4 1 |are equal and the third is double of them. Find the eigen values of 4°.
1 1 4
6 -2 2 2
10.  Find the eigenvalueof 4= -2 3 —1| whose eigen vector is (—1) .
2 -1 3 1
-1 _1 4 1 \ .
11. IfA~ = c (_2 1) , find the eigen values of A.
6 2 2
12. One of the eigenvalueof 4= -2 3 —1| is8. Find the other two eigen values.
2 -1 3
a b

13. Ifthe eigen values of A = (c ) are 1, —1. Find the eigen values of 4™ and 4°

d
. : 304 (1 2
14. Find the eigen values of 4" if A = (0 3).
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15. Find the sum and product of eigen values of the matrix 4 =

S NN
S D DN

0
0 | without actually finding
3

the eigen values.

16.  Find the eigen values of 2A + 31 if the the matrix A = (5 4).

1 2
0 1 1
17. If the product of two eigen valuesof A=|1 0 1| is1, find the third eigen value.
1 10
2 =2 2
18. Two eigen values of the matrix A = <1 1 1 > are equal to 2 each. Find the eigen values of A°.
1 3 -1
1 0 O
19. One of the eigen valuesof A=|0 3 —1 |is4. Find the other two eigen values.
0 -1 3

20. Determine which of the following vectors are eigen vector of A = (5 4) .

| ! 1 2
%= () %= ()
2 0 -1

21. If 1 and 2 are the eigen values of (0 2 0 ), find the value of ‘a’.
a 0 2

Cayley Hamilton Theorem
Statement: Every square matrix satisfies its own characteristic equation.

ie. If a A" +aA"" +a,A"” +...+a, A+a,=0 isthe characteristic equation of a square matrix 4
of order n, then a 4" +a, 4" +a,4" +....+a, A+a,l =0 ... (1D

Note:

1. The RHS of (1) is a null matrix of order n.

2. If 4 isnonsingular, 4™ can be obtained using this theorem.

3. Any positive integral power of A4 can be expressed as a linear combination those of lower
degree.

4. adj(A) = —a,A"'a, A" —a, A" —.......... —a
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Solved Problems
1. If 2, 3 are eigen values of a square matrix A of order 2, express A in terms of A and L.
Since 2, 3 are the eigen values, the characteristic equation is of the form
(A-2)(1-3)=0
A7 =51+6=0
.. By Cayley Hamilton theorem, A4°> —54+61=0. .. A°=54-61

2. If 1,2, 3 are eigenvalues of a square matrix A of order 3, express A3 in terms of lower
powers of A and L.

Since 1, 2, 3 are the eigenvalues, the characteristic equation is of the form
A=1DRr-2)(A=3)=0
(A =3r+2)(A—3)=0
(AP =302 +2L -3 +94—6) =0
AP —6A*+ 110 —6=0
.. By Cayley Hamilton theorem, A3 — 6A%2 + 11A — 61 =0

Therefore A3 = 6A? — 11A + 61

0 2
3. Verify Cayley Hamilton Theorem for 4 = (4 OJ' Also find 4°*.

The characteristic equationof 4 is |A—A1|=0

.. By Cayley Hamilton Theorem, 4°> -8/=0 1)
i 0 2) (0 2) (80
A =AxA = X =
4 0 4 0 0 8
5 8 0 1 0 8 0 8 0 0 0
A 8] = -8 = - =
0 8 0 1 0 8 0 8 0 o0

Hence the theorem is verified.

Multiply (1) by 4*, we get 4*-84° =0
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At =84
_88 0) (64 0
o 8) Lo o4
4 6 6

4. Using Cayley Hamilton Theorem, find the inverseof 4= 1 3 2
-1 4 -3
The characteristic equation of 4 is |A—-A1|=0
ie. 1’-S4°+S,4A-S,=0 where
S, = sum of diagonal values of 4 =4+3-3=4
S, = sum of minors of leading diagonal of 4

4 6
1 3

‘3 2‘ ‘4 6
= +

+
4 -3 -1 -3

‘=—1—6+6=—1

S, = A= 4(=9+8)—6(~3+2) + 6(—4+3) = —4+6—6 =4
C 42 - 2+4=0
.. By Cayley Hamilton theorem, we have 4’ —44> — A+41 =0 ........... (1)
Pre multiply equation (1) by 4™, we get 4> —44—-1+447"=0

A =i(—A2 +44+1)

4 6 6 4 6 6 16 18 18

A=1 3 2x1 3 2|=|5 7 6
-1 4 3) (-1 4 3 -5 -6 -5
-16 -18 -18 16 24 24 1 00 1 6 6
A‘lzi -5 -7 6|+ 4 12 8 |[+{0 1 O :i -1 6 2
-5 -6 =5 -4 -16 -12 0 0 1 I -10 -6
1 2 3
5. Apply Cayley Hamilton Theorem to find the inverseof A={2 4 5
3 56

The characteristic equation of 4 is |A—-Al]=0
ie. ’—=84*+5,4-S,=0 where
S, = sum of diagonal values of 4=1+4+6=11
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S, = sum of minors of leading diagonal of 4 S, = 4|
4 5 13 o2 23
= + + _
56 36 2 4 =12 45
3 506
=(24-25)+(6-9)+(4-4)
—_1-3 =1(24-25)-2(12-15)+3(10-12)
=—4 =-1+6-6
=-1

. the characteristic equationis A’ =111 =441 +1=0

.. By Cayley Hamilton theorem, we have 4’ —114°>-44+1=0

Pre multiply equation (1) by 4™, we get A’ —114-41+A4"' =0
A =—A+114+41

1 2 3)(1 2 3) (14 25 31

A =2 4 5|x|2 4 5|=|25 45 56

3 56)13 5 6) (31 5 70
14 25 31 1 2 3 1 00 1 -3 2
A'=—-|25 45 56 |+11|2 4 5|+4/0 1 0| =|-3 0 -1
31 56 70 356 0 0 1 2 -1 0

1 2
Use Caley Hamilton Theorem to find A* —44° —54> + A+2] if A= (4 3}

The characteristic equation of 4 is |A—-Al]=0

1-1)3B-4)-8=0
A2 —41-5=0
-. By Caley Hamilton Theorem, 4> —4A4-51 =0 ............. (D
A* =44 -S54 + A+2] = A (A —4A4-51)+ A+2]

=(4+21) {Using (1) }

1 2 1 0
= +2
3o )
(3 2
|6 5
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2 -1
7. Given 4= (1 ; j, express A'—4A4’—A4>+2A4-51 as alinear polynomial in A and hence

evaluate it.

The characteristic equationof 4 is |A—A1|=0

2-4 -1
=0
1 3-1 - 1
A +4-31
2-A)B-1)+1=0
AP =50+7=0 A 54471 | AT -4 -4 42451
.. By Cayley Hamilton Theorem, A — 543 4742

Dividing 4*—44’ - A4 +24-51 by (1), we get
A =44 — A2 +24-51

A% —8A%2 424 - 5]

A} — 542 4+ 74

= (A* =5A4+71) (4> +A-3I) + (204 +161)
= (-204+161) {Using (1) }

—3A% _5A_ 5]
—34% + 154 — 211

2 -1 1 0
=-20 +16
3o o)

(24 20
~ (20 —44

1 1 3

—204 + 16/

8. Verify Caley Hamilton Theoremfor 4= 1 3 -3 |. Alsofindadj(4)and 4.

-2 4 4
The characteristic equation of 4 is |A—A1|=0
ie. 1’-S4°+S,4A-S,=0 where
S, = sum of diagonal valuesof 4 =1+3-4=0

S, = sum of minors of leading diagonal of 4

3 -3 (1 31|11
= + + =-244+2+2=-20
-4 4 -2 4| 1 3

https://doi.org/10.5281/zenodo.15288051
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S, = Al=1(-12-12) —1(—4— 6) + 3(—4+ 6) =24 +10+ 6 = -8

oA =201+8=0
.. By Cayley Hamilton theorem, we have to prove 4’ —204+81=0 .......... (D)
1 1 3 1 1 3 -4 -8 -12

A=1 3 3|x|1 3 =3[=|10 22 6
-2 4 4 -2 4 4 2 2 22

-4 -8 -12 1 1 3 12 20 60
A=A4x4 =[10 22 6 |x| 1 3 =3|=|20 52 -60
2 2 22 -2 -4 4 —40 -80 -88
12 20 60 1 1 3 1 00 0 00
A -204+81 =20 52 60| -20]1 3 3| +8/0 1 0|=|0 0 O
—-40 -80 -88 -2 4 4 0 0 1 0 00
Hence the theorem is verified.
From (1), Adj A =—A>+201
4 8 12 20 0 0 24 8 12
=/-10 22 -6 |+ 0 20 0| = [-10 =2 -6
-2 2 22 0 0 20 -2 -2 2
Pre multiply (1) by 4™, we get 4*> =20/ +84™' =0
. 24 8 12
A‘lzg(—A2+201) :% -10 -2 -6
-2 2 2
2 -1 1
9. Verify Cayley Hamilton Theorem for A=|-1 2 -1|. Hence compute 4
I -1 2
The characteristic equationof 4 is |A—A1|=0
ie. ’-84°+S,4-S,=0 where
S, = sum of diagonal valuesof 4 =2+2+2=6
S, = sum of minors of leading diagonal of 4
e N N —(4-D)+@-1)+(4-1)=9
2] o2 2] -
S, g A4AF24-D+1(2+D)+1(1-2)=6-1-1=4
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LA =67 +94-4=0

.. By Cayley Hamilton theorem, we have to prove 4’ —64> +94—41 =0

....... (1)
2 -1 1 2 -1 1 6 -5 5
A=AxA4=|-1 2 -1| x|[-1 2 -1|=|-5 6 -5
I -1 2 1 -1 2 5 -5 6
6 -5 5 2 -1 1 22 22 21
A=A"xA4=|-5 6 -5|x|-1 2 -1|=|-21 22 =21
5 =5 6 1 -1 2 21 21 22
22 =22 =21 6 -5 5 2 -1 1 1 00
A —64+94-41 =|-21 22 21|-6|-5 6 -5[+9|-1 2 -1|— 4/0 1 0
21 21 22 5 -5 6 1 -1 2 0 0 1
0 0O
=(0 0 O
0 0O
Hence the theorem is verified.
Pre multiply (1) by 4™, weget 4> —64+91-44"' =0
. | 6 -5 5 2 -1 1 1 00
A”:Z{Az—6A+9I} =24[=5 6 =5|=6/-1 2 -1]+9/0 1 0
5 -5 6 1 -1 2 0 0 1
31 -1
:ll 3 1
4
-1 1 3
. . - 1 3 6 = 2 _1
10. Using Cayley Hamilton Theorem find 4~ and 4"+ A4°, if 4= 5
The characteristic equation of 4 is |A—-A1|=0
2-4 -1
=0
5 =2-1
Q2-A)(2-1)+5=0
AP +1=0
.. By Cayley Hamilton Theorem, 4°> +1 =0 .......(1)
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Pre multiply equation (1) by 4™, weget A4+ 4" =0
A'=—4

Multiply equation (1) by 4,we get 4’ +A4=0

A=—4
A° =4
A+A=4>-4
(A +1)—A-1
=—A-1 {using (1) }

(31
-5
1 2
11. Using Cayley Hamilton Theorem find 4" if 4= 4 3 and hence find A3.

The characteristic equation of 4 is |A—A1|=0

1-1)3B-4)-8=0
AP —44-5=0
A+D)(A1-5)=0
.. the eigen values are A=-1,5
.. By Cayley Hamilton theorem, we have 4> —44-51=0 .......... (D
Dividing A" by A’ —44-5, the quotientis O(4) and the reminder is (aA+b5), then
A= (A =42-5) O(A) + (aA+D) ... (2)
Putting 4=-1,5 in equation (1), we get —a+b=(-1)" and S5a+b=5"

Solving, we get a = %[5’1 - (—1)”} b= 2[5” + 5(—1)"J
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o

Put 1= A4 in equation (2), we get A" =aA+bl {using (1)}

1 1 2 1 1 0
=—|5" = (-1)" + —| 5" +5(-1)"
AR N EERE TS (A
1 2 1 0
p126(12) 120
6 (4 3 6 \0 1
1 2 1 0
=21 +20
&3l )
B 41 42
|84 83
Exercise

Verify Cayley Hamilton theorem for the following matrices:

211 2 2 -7
M (010 @)l|21 2
112 01 -3

Use Cayley Hamilton theorem to find the inverse of the following matrices:

3 -1 1 1 1 0 1 0 0 1 2 0
(i A=(-1 5 -1} (i)| 0 0 1 (i) A= (0 3 —1) (iv) A= (2 -1 0 >
1 -1 3 -1 10 0 -1 3 0 0 -1
|
Use Cayley Hamilton theorem to find 4*—44>-54>+ A+2I,when 4= (4 3}

If 2,-1 are eigen values of a square matrix A of order 2, express A* interms of A and 1.

If 1,2,-1are eigen values of a square matrix A of order 3, express A3 in terms of lower powers of
A and L.

If A% = I, what do you understand by Cayley Hamilton theorem about the eigenvalues?

Verify Cayley Hamilton Theorem for A = (3 2) .

Given A = (2

9 2) , express A*—44>—A4>+2A4-5I asalinear polynomial in A and hence

evaluate it.

Use Caley Hamilton Theorem to find 4* —44> —54> + A+2] if A= (_11 _11)

10. Using Caley Hamilton Theorem find 4™' and 4’ +A4°, if A = ((1) _01) :
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5 3

11. Using Caley Hamilton Theorem find 4" if A = (1 3

) and hence find A3.

Diagonalisation

Two matrices 4 and B are said to be similar, tf there exists a non singular matrix P such that
B = P'AP are said to be similar matrices.

If a square matrix A4 of order n has n linearly independent eigen vectors, then a matrix P can be
found such that P'4P is a diagonal matrix.

Let 4 be amatrixof order 3andlet X,,X,,X;  bethe eigen vectors corresponding to the eigen

values A4, 4,, 4, respectively. Then AX, =4 X, , AX, =4 X,, AX, =X,
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Let P=[X, X, X,]. Then 4P= A [X, X, X,]
:[AXl AXz AX3]
]

=[1X, AX, AX,

4 0 0
=[x, X, X;]|0 4 O
0 0 4

=PD

Premultiply by P, we get P"'AP=D
Note:

1. The matrix P which diagonalises A is called modal matrix.

2. A is diagonalizable if and only if its eigen values are distinct otherwise the eigen vectors must be
linearly independent.

Calculation of powers of a matrix
The diagonal form D of A4 isgivenby D = P"'4P
AP=PD
A=PDP""'
A" =(PDP " (PDP ") (PDP™).......(PDP™") (k factors)
A" =PD(P"'P)D(P'P)D(P'P)D......... (P'P)DP!
A" =pPD'P!
Diagonalisation by orthogonal transformation

Let 4 be a real symmetric matrix. Then the eigenvectors of 4 will be linearly independent as well as
pairwise orthogonal. Then we use normalized eigenvectors of A4 to form the normalized modal

matrix P. Now it can be proved that P is an orthogonal matrix then P" = P".

Note:

1. Let X be an eigenvector. Divide each element of X by the square root of the sum of the squares of
all the elements of X . The resulting eigenvector is the normalized eigenvector.

1 1
2. IfX = G) is an eigenvector, then its normalised form is 12;22 = \/Zg
V12422 \/_5
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The characteristic equation of 4 is |A—-Al]=0

ie. ’-S1°+85,4A-5,=0 where

https://doi.org/10.5281/zenodo.15288051

1 1
1 V12422422 3
. : . : : 2 _1z2
3. IfX= (é) is an eigenvector, then its normalised form is o | = | 3
2 2
V12422422 3
Working Rule:
1. Find the eigenvalues of the given matrix
2. Find the eigenvectors
3. Form the modal matrix M whose columns are the eigenvectors
4. Form the normalised modal matrix N. Now N is orthogonal and hence NT = N~
5. Then N"'AN = NTAN = D where D is a diagonal matrix whose elements are the eigenvalues.
Solved Problems
) . 1 0
1. Can we diagonalise 4 = 0 1 ?
Obviously, the eigen values are 1 =1, 1
Consider the equation (4—-A/)X =0
-4 0 x
=0
0 1-A)\y
(1 — /1) x+0y=0
Ox + (1 - i) y=0
When A =1, the above equations becomes,
0)x=0
0)y=0
1 0
Let one solution is X, = 0 and the other solution is X, = L) Also they are independent.
Hence the given matrix can be diagonalised.
3 -1 1
2. Diagonalise 4= -1 5 -1 | by orthogonal reduction and hence find 4°.
I -1 3
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S, = sum of diagonal values of 4 =3+5+3=11

S, = sum of minors of leading diagonal of A4

5 -1 3 1 |3 -1
= + + =14+8+14=36
-1 3| 1 3 |-1 5

S, = A=315-1)+1(=3+1)+1(1-5)=42-2-4=36
o AP =114 +364-36=0

By inspection A =2 is aroot. (Try synthetic division here)
By synthetic division, we have

A2 —91+18=0
(A=3)A-6)=0
1=3,6

.. The eigen values of 4 are 1=2,3,6

X
Consider the equation (4—-A/)X =0 where X =| y

z

B-A)x-y+z=0
—x+(5-)y-z=0
x-y+@B-A)z=0

Case (i): When A =2, the simultaneous equations (4—-A4/)X =0 becomes

x—y+z=0 X y Z
—x+3y—-2z=0 -1 1 1 -1
x—y+z=0 3 -1 -1 3
Solving first and second equation, we get A ie. LA A
-2 0 2 -1 0 1
-1
.. the eigenvectoris X, =| 0
Case (ii): When A =3, the simultaneous equations (4—A/)X =0 becomes
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-y+z=0 X y zZ
—X+2y—-2z=0 -1 1 0 -1
_ -1 0 1 -1
x—y=0
1
. . . . X Yy z . .
Solving first and third equation, we get 1 = 1 = 1 .. the eigenvectoris X, =|1

Case (iii): When A =6, the simultaneous equations (4—-A1/)X =0 becomes

1

3x—-y+z=0 X y Z
—Xx—y-z=0 -1 1 -3 -1
x—y-3z=0 -1 -1 -1 -1

Solving first and second equation, we get S A, ie. I-X.2
2 4 2 1 -2 1
1
.. the eigenvectoris X, =| -2
1
Now X, X,, X, are pairwise orthogonal.
-1 1 1
Consider the modal matrix M =| 0 1 -2
I 1 1
BT
NN
Then the normalized modal matrix N =| 0 12
NERN{G
I
NI INS
The required orthogonal transformation that diagonalises 4 is N"AN =D
B 2 36
RN I RN N NoRINCRN G
1 2 3 12
AxN=|-1 5 -1|x| 0 — ——| = 0o = =
R NN NN
I . 2 3 8
VRN RN B G RN SN

https://doi.org/10.5281/zenodo.15288051
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L T N P
NN N N SN
1 1 1 3 12
N'xAxN = | — — — | x 0 — —| =10 3 0
NN NN B DO
1.2 1 2 3 5
NN N V20 3
= D(2,3,6)
We know that 4°=ND*N"
I S Loy L
BB | o0 | 2P
1 2 1 1 1
= 0 — —-—|[x|09 0|x| —= —&= —
NN G GG
0 0 36
L L S
NN RN NN AN
11 -9 7
=-9 27 9
7 -9 11
2 0 4
3. Diagonalise the matrix 4={0 6 0 | by orthogonal reduction.
4 0 2

The characteristic equation of 4 is |A—-Al]=0
ie. 1’-854°+S5,A-8,=0 where
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S, = sum of diagonal values of 4 =2+6+2=10
S, = sum of minors of leading diagonal of A4

20
0

2 4
4 2

6 0
0 2

‘+‘ ‘+‘ ‘:12—12+12:12

S, = A|=2(12) + 4(-24) =24 - 96 = —72

LA =102 +124+72=0

By inspection A =-2 isaroot.

-2 1 -10 12 T2
By synthetic division, we have
AP —124+36=0 o 2 24 72
(-6 =0 1 -12 36 0
A=6,6

.. The eigenvalues of 4 are 4 =-2,6,6
x

Consider the equation (4—-A4/)X =0 where X =| y
z

2-A)x+4z=0
(6-4)y=0
4x+2-1)z=0

Case (i): When A =-2, the simultaneous equations (4—A/)X =0 becomes

4x+4z=0 X y zZ
8y =0 0 4 4 0
4x+4z=0 8 0 0 8
Solving first and second equation, we get — === ie. —=1=2
-32 0 32 -1 0 1

-1
.. the eigenvector is X; = ( 0 )
1

Case (ii): When A = 6, the simultaneous equations (4—A4/)X =0 becomes
—4x+4z=0

0)y=0

4x—4z=0
1

i.e. we have only one equation x—z=0. Solving we get X, =| 0
1
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a
Case (iii): Let X, =| b | be the thirdeigen vector corresponding to A =6 such that

c
X, X; =0 and X, X, =0 X y z
0 -1 1 0
~ a—-c=0 and a+c=0 0 1 1 0
: _ a b ¢ . a b c
Solving the equations, we get —=—=— ie. —=—=—
0 -2 0 0 1 0
0
.. the third eigen vectoris X, =| 1
0
Now X, X,, X, are pairwise orthogonal.
1 10
Consider the modal matrix M =| 0 0 1
-1 10
L
NG
Then the normalized modal matrix N =| 0 0 1
LR
NN
The required orthogonal transformation that diagonalises 4 is N"AN =D
L
2 0 4 NG
AxN= 10 6 O|x| O 0 1
4 0 2 L 0
NN
2 5
NN
= 0 0 6
26
NN
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1 1
— 0 —— 2 6
-— — 0
T
NixAxN = | — 0 — | x 0 0 6
2 2 56
0 1 0 — —= 0
V22
-2 00
=10 6 0| = D(-2,6,6)
0 0 6

3. Find the matrix 4 whose eigenvalues and eigenvectors are -2, 6, 6 and
1 1 0

01, 10|, |1]| respectively.
-1 1 0
We know that N" AN =D where N is normalized modal matrix, D is a diagonal matrix of

eigenvalues.
1 1 0
Modal matrixM={ 0 0 1) andhence
-1 1 0
L
NGIEENG)
the normalised modal matrix N = 0 0 1
RS S
V22

Since N is orthogonal, N' = N'
Therefore, N 'AN =D

NN'ANN'= NDN', pre multiply by N and post multiply by N

A= NDN™'
1 1
1 1 — 0 -——
— — 0
NCEENG) -2 0 0 \/15 \1/5
A=1| 0 0O 1|{x]|]0 6 0|x|— 0 —
Lol
2 2
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Exercise

1. Diagonalise the following matrices by means of an orthogonal transformation

2 1 -1 2 21 3 -1 0 6 2 2
m[1r 1 =2 g (1 3 1 i) | -1 2 -1| (iv) A=|-2 3 -1
-1 =2 1 1 2 2 0 -1 3 2 -1 3
5 0 1
2. Diagonalise 4=|0 -2 0| by orthogonal transformation and hence find A?.
1 0 5

1 2 3
3. Diagonalise the matrix |0 3 1| if possible.
0 0 1

-1 5 3
3. If 1,3, -4 are the eigenvaluesand | 4 |, | 6|, | —2 | are the respective eigen vectors, find the
1 1 2

corresponding matrix A.

0 2 1
4. Find the matrix 4 whose eigen values and eigen vectors are —1, 1, 4 and (1) , (—1) , ( 1 >
1 1 -1
respectively.

Linear Transformation of a Quadratic Form

A homogeneous polynomial in any number of variable is called a Form. A homogeneous polynomial of
degree two in any number of variable is called a Quadratic Form.

Example:  x2 — 2xy + 3y?(in 2 variables), x? + 2y? — z2 + 2xy — 3yz + xz(in 3 variables)
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X
Any quadratic form (say in 3 variables x, y, z) can be expressed as X’ AX where X =| y | and

V4

X XZ

2 v ow

2 2

. . Xy yzZ

A= Coefficient of | = y? =
XZ YA

2 yz
2 2

Example: Write down the matrix of the quadratic form: 2x; —2x] +4x] +2x,x, + 6x,x, — 6x,x,

2 1 -3
The matrix of the quadratic formis 4=| 1 -2 3
-3 3 4

Let X" AX be a quadratic form and consider a non singular transformation X = PY, P is orthogonal
M

0%
matrixand Y =| :

Yn
There fore ~ X"AX = (PY)" A(PY)
= Y (P"4P)Y
=Y (B)Y where B=P" AP
Clearly B is a symmetric matrix..

Y" (B)Y is also a quadratic form.

ie. Y"(B)Y isthe linear transformation of the quadratic form under X = PY .

If by any non singular linear transformation, a quadratic form be expressed as a sum of squares of the
new variables, then the later expression is called the canonical form of the given quadratic form.

Orthogonal reduction of a quadratic form to canonical form

The method of reducing a quadratic form to canonical form is known as orthogonal reduction. Let
X" AX be a quadratic form. Let M be the modal matrix and let N be normalized modal matrix. Since
N=N"and |N|=1, N is an orthogonal matrix. Then the orthogonal transformation X = NY will
reduce the quadratic form to Y'D(4,,4,,...4,)Y where A,4,,...4, are the eigenvalues of A.This

method is applicable only if the eigenvectors are linearly independent and are pairwise orthogonal.
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Nature of the Quadratic Form.

Let X" AX be the given quadratic form and let Y’ DY be its canonical form. Now Y’ DY will

contain only » terms, if the rank of 4 is ». The number of positive terms in the canonical form is called
the index and is denoted by s. .. the number of non positive terms is »—s. The difference between
number of positive terms and the non positive terms is called the signature of the quadratic form. i.e.
signature = s —(r—s) = 2s —r. The quadratic form X’ 4X in n variables is said to be

i. Positive definite if »=n, s=n.

ii. Positive semi definite if r<n, s=r
iii. Negative definiteif »=n, s=0

iv. Negative semi definite if r<n, s=0

v. Indefinite in all other cases.

Another Method

i. Positive definite if all the eigenvalues of 4 are positive

ii. Positive semi definite if all the eigenvalues of 4 >0 and at least one eigen value is zero
iii. Negative definite if all the eigenvalues of 4 are negative

iv. Negative semi definite if all the eigenvalues of 4 <0 and at least one eigenvalue is zero

v. Indefinite if 4 has positive as well as negative eigenvalues.
Another Method

Let D,,D,,......, D, are called the principal sub determinants of 4. The quadratic form is said to be
i. Positive definite if all D, D,,......,D,>0

ii. Positive semi definite if some D, =0 in (i)

iii. Negative definiteif D,, D,, D, .......... <0 and D,, D,,D,,......... >0

iv. Negative semi definite if if some D, =0 in (iii)

v. Indefinite in all other cases.

Solved Problems

1. Reduce the quadratic form 3x° +3)° +3z° +2xy—2yz+2xz to canonical form by
orthogonal reduction. Also find its rank, signature, index and nature of the quadratic form.
X
Given quadratic form can be expressedas X' 4X ....(1) where X =| y

z
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3
and the matrix of the quadratic formis 4=|1
1

1 1

The characteristic equation of 4 is |4A—A1|=0

ie. ’-SA*+5,4-S,=0 where

S, = sum of diagonal values of 4=3+3+3=9

S, = sum of minors of leading diagonal of 4

3 -1 3 1 31
= + +

-1 3] 1 3 (1 3
=O0-D+0O-D+O-1
=24

.. the characteristic equation is A° —~91%> +241-16=0

By inspection A =1 is aroot, since =1-9+24-16=0.

By synthetic division, we have

A*—8A+16=0
(A—4)(A—-4)=0
A=4,4

S A=1,4, 4 are the eigenvalues

Consider the equations (4A—-A1)X =0

3-4 1 1
13-4 -1 | y|=0
1 -1 3-i)lz

B-A)x+y+z=0
x+@B-A)y—-z=0
x—y+B3-1)z=0

Case (i) When A =1 the equations (4—A/)X =0

becomes
2x+y+z=0

x+2y—z=0
x—y+2z=0

2 ¥ X
3 -1 (x v X
-1 3 Coefficient of % y? %
2 yz .2
2 2
Sy = A
31 1
=1 3 -1
1 -1 3
=309-1)-13+D+1(-1-3)
=24-4-4
=16
1 1 -9 24 -16
0 1 -8 16
1 -8 16 0
Case (ii) When A =4 the equations
(A—AI1)X =0 becomes
-x+y+z=0
x—y—-z=0
x—y—z=0
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Solving the first and second equations, we have Here all the equations are identical. Hence put

x _y _ =z x=0, y=1, wehave z=-1

-1-2 1+2 4-1
*_r_Z 0
-3 3 3 o X,=| 1 | isthe eigen vector.

-1 _1

. X, =| 1 |isan eigenvector.
1
a

Case (iii) Let X, =| b | be the third eigenvector.
c
Here X, and X, are orthogonal. Hence X, x X, =0. ie. 0a+b—-c=0
Also X, satisfies x—y—z=0 and hence a-b—-c=0

Solving these two equations, we have
a b c

1.1 —1-0 0-1

2
. X, =| 1] is the eigen vector.
1

a_b_c

2 -1 -1

Now X,, X,, X, are pairwise orthogonal.

Consider the modal matrix M =| 1

Then the normalized modal matrix N =

G- &l- &l
SIL -
- 5= &

Now N is orthogonal matrix and hence N™' = N'
N
Consider the orthogonal transformation X = NY .....(2) where Y =| y,

Y3
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oy 2 (2L, &
N B il I IV BN
1 1 1 1 4 4
Consider AxN=|1 3 -l|{x|—= ——= —|=|—/—= — —
AV I IV N o Bl NN N
) T N s
NN B W RN
-ty (2L, &
NN I N Nl P
1 -1 1 4 4
N'xAxN = | 0 —= —|x|—= —= —| =0 4 0
RGBT
0 0 4
2 1 11 44
Jo o o) (3 V2 e
N
Consider the orthogonal transformation X = NY .....(2) where Y =| »,
V3
Substitute (2) in (1) , we get
X"4X = (NY)" A(NY)
=Y (NTAN)Y
=Y (DY {by diagonalisation}
1 0 0)(y
=(y1 Vs ys) 0 4 0|y
0 0 4)(y,

= Y +4y; +4);

Number of terms in the quadratic form is rank, » =3
Number of positive terms in the quadratic form is index, p =3

Signature of the quadratic formis 2p—r»=6-3=3. Number of variable n=3
Here r=n and p=n. Hence the quadratic form is said to be positive definite.

2. Obtain an orthogonal transformation which will transform the quadratic form

2x,x, +2x,x, + 2x,x, to canonical form.

X

Given quadratic form can be expressed as X' AX ....(1) where X =| x,

0 1

and the matrix of the quadratic formis A=|1 0

1 1

The characteristic equation of 4 is |A—A1|=0
ie. 1’-84*+S,4A-S,=0 where

O =

https://doi.org/10.5281/zenodo.15288051
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S, = sum of diagonal values of 4 =0 S, = sum of minors of leading diagonal of 4

0 1 ‘0 1 o 1‘
= + + =-1-1-1=-3
1 o (1 o |1 O
S, =1 A=-10-)+11-0)=1+1=2
A =31-2=0
By inspection A =2 isaroot. 2 1 0 .3 )
By synthetic division, we have
AT +24+1=0 0 2 a 2
(A+1)° =0
A=-1,-1 1 2 1 0
.. The eigenvalues of 4 are 1=2, -1, -1
X
Consider the equation (4—-A/)X =0 where X =| y
z
O-A)x+y+z=0
x+(0-A)y+z=0
x+y+(0-24)z=0
Case (i): When A =2, the simultaneous equations (4—A4/)X =0 becomes
-2x+y+z=0 X y Z
x=2y+z=0 1 1 —2 1
x+y-2z=0 —2 1 1 —2
Solving first and second equation, we get 2222 ie. A A
3 3 3 I 1 1
1
.. the eigenvectoris X, =|1
1
Case (ii): When A =—1, the simultaneous equations (4—A/)X =0 becomes
x+y+z=0
x+y+z=0
x+y+z=0

i.e. we have only one equation x+y+z=0.
1

Taking x=1,z=0 weget y=-1. Hence X, =| -1
0

a
Case (iii): Let X, =| b | be the third eigen vector corresponding to A =—1 such that

C
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X, X! =0and X,.X] =0 X y z

© a—-b=0 and a+b+c=0

Solving, we get £-2-° ie. £=é=i and hence X, =| 1
-1 -1 2 1 1 =2
-2
Now X,, X,, X, are pairwise orthogonal.
1 1 1
Consider the modal matrix p; |1 -1 1
1 0 2
L
Then the normalized modal matrix \/1§ ‘/? \/IE
“IE R %
Ly -2
V3 J6
Now N is orthogonal matrix and hence N™' = N’
N
Consider the orthogonal transformation X = NY .....(2) where Y =| y,
Vs
L . 2 1
S I S S N N BN N
: 1 1 1 2 1 1
Consider AxN = 1 (1) é X NN = NN 7
1oy 212 0 £
3 J6 3 J6
. 2 1
NN N N N N
r 1 1 2 1 1
NxAxN—$—$0x$$—ﬁ_o—ol_Ol
P S
NN B W NG
Substitute (2) in (1), we get
X"4X = (NY) A(NY)
= Y (N"AN)Y
=Y (D)Y {by diagonalisation}
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2 0 0 b2
=n»y»|0 -1 0 V2

0 0 -1)
=2y, = -
Hence the transformation which transform the given QF to CFis X = NY .
R
X |=l&= ——= —&= |X
2 J§ \/5 \/g b
X3 1 ) Vs
- 0 =
3 J6
\/_y] \/—yz \/—y3
\/_yl \/—yz \/—y3

X3 zﬁ)ﬁ +0y, _ﬁ%

3. Reduce the quadratic form 10x” +2)” +5z> +6yz —10xz — 4xy to canonical form by

orthogonal reduction. Also find its nature.
X

Given quadratic form can be expressedas X" A4X ....(1) where X =| y

z
10 -2 -5
and the matrix of the quadratic formis 4=| -2 2 3
-5 3 5

The characteristic equation of 4 is |A—A1|=0
ie. ’-84*+S,4-S,=0 where

S, = sum of diagonal values of 4 =10+2+5=17
S, = sum of minors of leading diagonal of 4

10 -5
—5 5

|10 —2

2 3
+ =16+25+1=42
—2 2 ‘ ‘3 5‘

S, =/ A]=10(10-9) +2(=10+15) - 5(-6+10) =10+10-20=0
A —1TAT 424 =0
AMA* =174+42)=0

A(A=-3)(1-14)=0
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.. The eigenvalues of 4 are 1=0, 3, 14
X
Consider the equation (4—-A/)X =0 where X =| y
z
10-A)x-2y—-5z=0
2x+2-A)y+3z=0
—S5x+3y+(5-2)z=0

Case (i): When A =0, the simultaneous equations (4—-A4/)X =0 becomes

10x-2y—-5z=0 X y Z
2x+2y+3z=0 -2 -5 10 -2
—S5x+3y+5z=0 2 3 —2 2

. , X oy z X 'y z
Solving first and second equation, we get —=——=— je. —=-—=—
4 20 16 1 -5 4
1
.. the eigen vectoris X, =| -5
4
Case (ii): When A =3, the simultaneous equations (4—A/)X =0 becomes
Tx—=2y-5z=0 X y Z
—2x—-y+3z=0 —2 -5 7 —2
—Sx+3y+2z=0 -1 3 —2 -1
Solving first and second equation, we get — ==X je S Ay
-11 -11 -11 1 1 1

1
Hence X, =|1
1

Case (iii): When A =14, the simultaneous equations (4—A/)X =0 becomes

—4x-2y-5z=0 X y Z
2x-12y+3z=0 -2 =5 —4 -2
—5x+3y-9z=0 -12 3 —2 -12

Solving first and second equation, we get — =-—=— i.e.
—-66 22 44 -3

x y _z . X |y

1
-3
Hence X, =| 1
2

Now X,, X,, X, are pairwise orthogonal.
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1 1 3

Consider the modal matrix M =| -5 1 1
4 1 2
L3
2 s
5 1 1
Then the normalized modal matrix N=| -— —= —
2 B s
4 L2
NrERN N
Now N is orthogonal matrix and hence N™' = N'
N
Consider the orthogonal transformation X = NY .....(2) where Y =| y,
Vs
L3 [y 2 A2
0 s e |2 B U NN
5 1 1 3 14
NowAxN=|-2 2 3 |x|-——= = — |=|0 = —
S M VR R v NN
412 0o o 28
W B oia NN
1 5 4 0 3 4
72 m m NN 0o o
1 1 1 3 14
N'xAxN = | — — — | x |0 = — =10 3 0
5 BB NN oo
_ 3 1 2 0 3 28
i Vi 4 NN
Substitute (2) in (1), we get
X"4X = (NY) A(NY)
=Y ' (N"AN)Y
=Y (D)Y {by diagonalisation}
0 0 O »
=W»y|0 3 0 b
0 0 14) (y,
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= Oy]2 +3y22 +14y32

Since the sign of the eigenvalues are positive and zero, the given quadratic form is positive
semi definite in nature.

4. Reduce the quadratic form x* +2)” +z> —2yx + 2zy to canonical form by orthogonal
transformation. Give a non zero set of values x, y, z which makes this quadratic form is
zZero.

x

Given quadratic form can be expressedas X" 4X ....(1) where X =| y

z

1 -1 0
and the matrix of the quadratic formis 4= -1 2 1
0 1 1

The characteristic equation of 4 is |A—A1|=0
ie. 1’-S4°+S,4-S,=0 where

S, = sum of diagonal values of 4 =2+1+1=4
S, = sum of minors of leading diagonal of A4

1
0

0
1

I -1

21
= + + =1+1+1=3
-1 2

I 1

S, = Al=12-1)+1(-1-0)=1-1=0
s A4 +34=0
AA-1)(A-3)=0

.. The eigenvalues of 4 are 1=0,1,3

X
Consider the equation (4—-A/)X =0 where X =| y

z
1-A)x-y=0

-x+(2-A)y+z=0

y+(1-4)z=0

Case (i): When A =0, the simultaneous equations (4—A4/)X =0 becomes
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x—y=0 X
—Xx+2y+z=0 -1 0 1 -1
1 1 0 1
y+z=0
Solving first and third equation, we get A A Le. T=Y-Z
-1 -1 1 1 1 -1
1
.. the eigen vectoris X, =| 1
-1
Case (ii): When A =1, the simultaneous equations (4—-A/)X =0 becomes
-y=0 X
—x+y+z=0 1 1 -1 1
1 0 0 1
y=0
Solving second and third equations, we get 2r_Z ie. 2222
-1 0 -1 I 0 1
1
Hence X, =|0
1
Case (iii): When A =3, the simultaneous equations (4—A/)X =0 becomes
—2x—-y=0 X
—X—-y+z= 0 -1 1 -1 -1
Solving second and third equations, we get - _Z ie. I AR
1 -2 -1 -1 2 1
-1
Hence X, =| 2
1
Now X,, X,, X, are pairwise orthogonal.
1 1 -1
Consider the modal matrix M =|1 0 2
1 1 1
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L
3 V2 6
Then the normalized modal matrix N = L 0 2
3 J6
I T
B2 e
Now N is orthogonal matrix and hence N™' = N'
N
Consider the orthogonal transformation X = NY .....(2) where Y =| y,
Vs
L o L 3
1 2 2 2
Now AxN=|-1 2 1|x|—= 0 — =|l—= 0 —=
0 1 1 3 Vo 3 V6
L. 2 13
NERENGIN 3 V2 e
I o L 3
5 BB NS BN
1 1 2 2
N'xAxN=| = 0 —=|x|-—= 0 —=|=/010
NN
21 2 13
% % %) \BE B
Substitute (2) in (1), we get
XTAX = (NY) A(NY)
= Y (N"AN)Y
=Y (D)Y {by diagonalisation}
0 0 0) (y
=M »ny)|0 1 0]y
0 0 3) 1\

=0y +1y; +3)5
The canonical form of quadratic form is zero when y, =y, =0 and y, is arbitrary.

The orthogonal transformation X = NY becomes

52| Page

https://doi.org/10.5281/zenodo.15288051



1 1

X=— S

_+__
FEE
—L +i
Yy 3)’1 \/gy3

z

1 1 1
SETTENT =N T =Y
NZRENCAN
Taking y,=+/3,,=0, y, =0, weget x=1,y=1,z=-1.
These values makes the quadratic form zero.

5. Determine the nature of the quadratic form x2+3y2+6z2+2xy+2yz+4xzwithout

reducing into canonical form.

1 1 2
Let the matrix of the quadratic formbe A=| 1 3 1
21 6
Now,D1=|1|=1>0 1 1 2
Ds=|1 3 1
11
D2= 2 1 6
1 3
=1(18-1)-1(6-2)+2(1-6)
=3-1
=17-4+2(-5)
=2>0
=13-10=3>0

Since all D 1, D 2, D 3are positive, the given quadratic form is positive definite.

6. Find the nature of the conic 8x” —4xy +5y” =36 by reducing the quadratic form
8x* —4xy+5)° to the form AX* + BY".

8 2
The matrix of the quadratic form is A4 :( 5 s j

The characteristic equationof 4 is |A—A1|=0

8—-1 2
-2 5-1

‘:0
B-A)(5-1)-4=0
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A =1322+36=0
(A—4)(1-9)=0
.. The eigen values of 4 are 1=4,9

.. the canonical form is of the form 4X* +9Y*

2 2
. given conic becomes 4X* +9Y* =36 i.e. ras 1 which is an ellipse.

7. State the nature of the quadratic form 2xy+2yz+2xz

0 1 1
The matrix of the quadratic formis A={1 0 1
1 10
D =50=0
0 1
D, = =0-1=-1
1 0
0 1 1
D,=|1 0 1|=-10-D+1(1-0)=1+1=2
1 10

Here D, =0, D, <0, D, >0. .. the quadratic form is indefinite in nature.

Exercise

1. Reduce the quadratic form 2x3 + 6x3 + 2x3 + 8x;"x5" to canonical form by orthogonal
reduction. Also find its nature.

2. Reduce the quadratic form 2x* + y* + z> —4yz —2xz + 2xy to canonical form by
orthogonal reduction. Also find its nature.

3. Determine the nature of the quadraticform 3x2-3y2-5z2-2xy-6yz- 6 xz without
reducing into canonical form.

4. Reduce the quadratic form 2x2+5y2+3z2+4xy to canonical form by an orthogonal transformation.
Also find the rank, index and signature of the quadratic form.

5. Reduce the quadratic form x* +5y° +z* +2xy +2yz + 6xz to its canonical form by orthogonal
reduction. Also find the signature, index and nature of the quadratic form.

Stretching of Elastic Membrane
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In matrix notation, we know that the transformation Y = AX transforms the input X to the output
form Y where A is the matrix of the transformation. Consider the following example:

An elastic membrane in the x,x, plane with boundary circle x} + x; =1 is stretched so that a point

. ) ) b 5 3)\(x
P(x,,x,) goes over into the point O(y,,y,) givenby ¥ = =AX = I :
Y2 X

In components, the transformation Y = 4X becomes
¥, =5x,+3x,
v, =3x, +5x,

From the transformation, X = A™'Y

el
o)l S
2 S

1
X _(Syl —3)/2)

“ 16

1
X, = R(_3y1 + Syz)

Substitute x,, x, in the given circle x; +x; =1 to get the transformed conic in y,, y,

1 1
E(Syl -3y, )2 +W(_3y1 +5y, )2 =1

25y12 +9y22 -30y,», +9y12 +25)/22 -30y,y, =256

34y! +34y; —60y,y, =256
which is the transformed conic.

2 2
Y
Removing the y,y, term with the usual method, the conic becomes — +— =4, which is an ellipse.

Thus a circle is deformed to an ellipse by the transformation.

X

AR
\_ L/

-

Given Shape Transformed Shape
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Application of Eigen Value, Eigen Vector in Stretching of Elastic Membrane

The transformation ¥ = AX deforms the shape of a conic. But we know that 4AX =AX . This gives the
eigenvalues and eigenvectors of A. Hence it can be applied to the study of stretching of a circular
membrane.

Consider the above example once again:
An elastic membrane in the xx, plane with boundary circle x/ + x; =1 is stretched so that a

: . : . BY 5 3)(x
point P(x,,x,) goes over into the point O(y,,y,) givenby Y = =AX = 3 s .
b X,

Find the principal directions of the position vector X of P for which the direction of the position
vector Y of Q. Also find the shape of the circle after stretching.

We have to find vectors X such that Y = AX . Since Y = AX ,we have 4AX =A1X, which is the
equation of getting eigen vector corresponding to the eigen value A.Hence we shall find the

eigenvalues first by using |4—41|=0.

5-12 3

‘3 5-4]

25-10A+A*-9=0
A7 =101+16=0
(1-2)(1-8)=0
A=2,8

Hence the eigenvalues are =2, 8. Now consider the system of equations (4—A/)X =0
(5-2)x,+3x,=0

3x,+(5-14)x,=0

If 1=2, 3x+3x,=0 & 3x,+3x,=0

ie. x,=-x,

1
SX :[ J is an eigenvector

If 2=8, —-3x+3x,=0 & 3x-3x,=0

ie. X, =x,

1
SX, = (J is an eigenvector

Since 6, = tan™' (—j =tan'(-1)=135° and 6, =tan™ (1j =tan"'1=45°
1 1
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These vectors make 135° and 45° angles with the positive x, direction. They give the principal

directions. The eigen values show that in the principal directions the membrane is stretched by

factors 2 and 8 respectively.

(8,8)

principal diregtion

principaldirection

%

Accordingly, if we choose the principal directions as directions of a new y,y, Coordinate system, say,
with the positive y, semi axis in the first quadrant and the positive y, semi axis in the second
quadrant of the xx, system. Hence, we have, if we set y, =4 cosg, y, = 4,sin¢, then a boundary point
of the unstretched circular membrane has coordinates cos¢, sin¢. Hence after the stretch we have

¥y, =2cos@, y, =8sing

N Yo
L =cos¢, —==sin
2 ¢ 8 ¢

2 2
%+&=cos2¢+sin2¢
y_12_|_y_§:1
4 64

This shows that the deformed shape is an ellipse.
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S Stretching by
Stretching by 5 ~ 8 times
1 - ‘,k“(
2 times \ff//) W \
,/ s
O/;&\C’/ D //
\ P ~O
AN 7 K4
N S ROPLS /
2N\ 5 U S
\ / Q e \@ //
N 7
3 /
/ /< N /
% / \ /
7 \o 7ol A
% | ¢ X,
205
/ N
/ > / ’ / \\
/ Y 4 // 2 N
/ N
W 7 // AN
A -~ N
L-(_~ — \
/
7 1

Given conic circle and transformed conic ellipse

1.5
Given matrix A4 :( j in a deformation Y = AX where Y :(ylj and X :(xl J , find the
X

1.5 3 V> 2

principal directions of the position vector X of P for which the direction of the position vector Y
of Q and the corresponding factors of extension or contractions.

We have to find vectors X such that Y = AX . Since Y = AX ,we have 4AX =AX, which is the
equation of getting eigen vector corresponding to the eigen value A.Hence we shall find the

eigenvalues first by using |4—A1|=0.
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27

A —6A+==0
4
2222202 g
27 274

(=33
(32

;.39
2 2

9

. Now consider the system of equations (4—A/)X =0

N | W
SN INe}

Hence the eigenvalues are A =
(3—4)x,+1.5x,=0
1.5x,+(3-1)x,=0

When 1 =1.5, the equations (A— /)X =0becomes

1.5x, +1.5x,=0 & 1.5x,+1.5x,=0

ie. X, =-x,

-1
o X =( ! J Is an eigenvector

When A =4.5, the equations (A—ZI)X = (0 becomes

—1.5x,+3x,=0 & 3x,-1.5x,=0

ie. X =X,

1
SX, = [J is an eigenvector

Since 6, = tan™' (LJ =tan"'(-1)=135° and 6, =tan Gj =tan"'1=45°

These vectors make 135° and 45° angles with the positive x, direction. They give the principal

directions. The eigen values show that in the principal directions the membrane is stretched by

59| Page

https://doi.org/10.5281/zenodo.15288051



3 9 .
factors 5 and 5 respectively.

(9 9]
\2°2)
3
principal diregtion L. .
prifncipa irection
(3 3}
27 2)
(1,-1)
/ )
X
- Stretching by
Stretching by 7/ 4.5 times
1.5 times \\/0,/ >
N7 g g
O//“(\ \C/ // N\ / /
00 /&
// \(7/ / O Q\\ /
Q / QER
27\ / N0 /
N Q&
N/ /7O /
\// ~.7 /
2 /
I\ | 7\ /
f \ /
V] N
/ o - X,
" e
/ 4 N
/ V& ¥ AN
[ 7 \
\
,/ 7/ // \
f.7 2 \
e ’ \
\(h,/'/ \
/ -
/ 1

X

. . 7 6. . ¥
Given matrix 4 = in a deformation Y = AX where Y = and X =

J6 2 ¥,

principal directions of the position vector X of P for which the direction of the position vector Y
of Q and the corresponding factors of extension or contractions.

) , find the

X,

We have to find vectors X such that Y = AX . Since Y = AX ,we have 4AX =AX, which is the
equation of getting eigen vector corresponding to the eigen value A.Hence we shall find the

eigenvalues first by using |4—A1|=0.
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7-2 6
J6  2-24
14-94+1>-6=0
AP =91+8=0
(A-1)(2-8)=0
A=1,8

=0

Hence the eigenvalues are 4 =1, 8. Now consider the system of equations (A —/II)X =0

(7-2)x,+6x,=0
J6x,+(2-2)x,=0

When A =1, the equations (A—/U)X =0
becomes

6x, +v6x,=0

x/gxl +x,=0

Both represents the same equations
\/gxl +x, =0 and hence

x, =—6x,

when x; =-1, Xx, =6

-1
S X :( } is an eigen vector.

Jo

When A =8, the equations (A —ft])X =0
becomes

—Ix, +46x,=0

\/gxl —6x,=0

Both represents the same equations

—1x, +4/6 x, =0 and hence

X :\/gxz

when x, =1, x, =6

LX, = [\/lg] is an eigen vector.

Since 6, = tan™' (—@J =tan"'(—/6) = —67.7°=112.3° and 6, =tan™' [Lj =22.2°

75

These vectors make 112.3° and 22.2° angles with the positive x, direction. They give the principal

directions. The eigen values show that in the principal directions the membrane is stretched by

factors 1 and 8 respectively.
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Exercise

Given matrix 4 in a deformation Y = AX , find the principal directions of the position vector X
of P for which the direction of the position vector Y of Q and the corresponding factors of

extension or contractions.

o (1es) (s 2y (2 04)
D A=los 1) Dy 3] Wigy o] @

0.75

1.25 0.75
1.25
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UNIT II - DIFFERENTIAL CALCULUS

Representation of Functions

Quantity: Anything which is capable of being measured or which can be divided into parts (in general
operations of Mathematics) is called a quantity.

A constant is a quantity which retains the same value throughout a mathematics investigation. A
constant may have fixed value, for example, 10, 15, 100, etc or may be supposed to have a fixed value in
any particular investigation. E.g. a, b, ¢ in the equation of straight line, ax+by+c=0. The first one is called
absolute constants and the second one is arbitrary constants.

A variable is a quantity which is capable of assuming different values that may be assigned to it.

Function: Functions provide us a convenient way to handle a relationship between a variable that
depends on the value of another variable. If y =x’ +3x, we see that when x=0, 1, 2, ..... y=0, 4, 14, .....

Here x and y are connected that if we make any change in the value of x, there is a change in the value of
y. When the quantities are connected in this manner, one is said to be a function of other. In this example
y is a function of x. Also x is the independent variable and y is the dependent variable.

Definition: A function consists of a domain and a rule. The domain is a set of real numbers. The rule
assigns to each number in the domain one and only one number.

Functions are normally by 7 or g and the elements in the domain are denoted by x, ¢, a. The value
assigned by a function A function f to a member x of its domain is written as f(x). The collection of
f(x) is called the range of 1.

Note:
1. A function must make an assignment to each number in the domain
2. A function can assign only one number to any given number in the domain.

Examples of Functions:
Let /' be a function whose domain consists of all real numbers and the rule assigns for any real x, the

number x’ +1. Then we write f(x)=x’+1, forall x.

LetPage | 63 f beafunction whose domain consists of all real numbers except 1 and the rule assigns

for any real x #1, the number x_+1 Then we write f(x)= x_+1’ for x #1.
xX— X -

Note: A function can be represented by an equation, graph, table or symbolic form in words
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We denote the function of x by the symbols as y, f(x), F(x), etc. For example,
y=x"+3o0r f(x)=x"+3, f:x—>y.
Vertical Line Test: A curve in the xy plane is the graph of the function f(x) if and only if no vertical line

intersects the curve more than once.
Check whether the following curves represent a function.

} 'Y
f
X' X X (_/ X
vy vy’
By vertical line test, it represent a function. By vertical line test, it does not represent a

function.

Guess: Can a horizontal line pass through more than one point on the graph of a function? Explain.

Example: Describe the function /' that associates with each temperature in degrees Celsius the
corresponding temperature in degrees Fahrenheit.

Let x be the temperature in Celsius. Then the temperature in Fahrenheit is F(x).

Therefore F(x)= %x +32. When Celsius x =0, the corresponding Fahrenheit value is F = %(0) +32=32
Example: If f(x)=x—2x+3, find the value of 1 (0), f(-3), f(2y).

f(0)=(0)’~2(0)+3=3

f(=3)=(-3)"-2(-3)+3=9+6+3=18

S2y)=(2y)" =2(2y)+3=4y" —4y+3

Example: A function is defined by f:x — ax+5b, where a and b are numbers. If f(1)=2 & f(2)=—1,
whatis /(3)?.

Given f()=2 & f(2)=-1
a+b=2 & 2a+b=-1
Subtracting we get a =-3

Substituting a=-3 in a+b=2, weget b=5
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Therefore f(x)=-3x+5 & hence f(3)=-3x3+5=-4

Example: If y= f(x)= ix_i , show that x = f(y).

Given
3x-3
4x -3
y(4x-3)=3x-3
4xy—-3y=3x-3

y:

4xy—-3x=3y-3
x(4y-3)=3y-3
_3y-3

x m=f(y)

Example: If y= f(x)= i+—x and z= f(y), find z as a function of x.
—X

Given
z=f(»)
14y
Cl-y
1+1+x
__1-x
o1t
1-x
I-x+1+x
_ 1—x
I-x-1-x
1-x
1
T 2x

Example: Find the domain and codomain of the function f(x)=+x-2.
Here value of f(x) exist for all values of x>2. Hence the domain of the function is 2 <x <. Also when
x =2 the value of f(x) is 0 and when x>2 , the value of f(x)>0. Hence the rangeis 0 <x < 0.

X +x=2

Example: Let f(x)= . Find the domain of 1.

X +5x—6
The denominator x> +5x—6 can be factored as (x—1)(x+ 6). Therefore the denominator is 0 for
x =1 and x =-6. Thus the domain of f consists all numbers except 1 and —6.

65| Page
https://doi.org/10.5281/zenodo.15288097



X' +x—2 C(x=D(x+2) x+2
X +5x—6 (x—1)(x+6) x+6
number 1 is not in the domain of f.

Note: f(x)=

Example: Find the domain of the function f(x)=

. Although the expression

x+2

is valid for x =1, the
x+6

2x* =5

X +x-6

The denominator x> +x—6 can be factored as (x —2)(x+3). Therefore the denominator is 0 for

x=2 and x=-3. Thus the domain of f consists all numbers except 2 and -3.

Even Function: A function f(x) is said to be
even if f(—x)= f(x) forall xin its domain.

Note: Even functions are symmetric with x
axis.

Example: x°, cosx, |x|are even functions.

ALY
y=|x|
X! X
0
5‘-!

0dd Function: A function f(x) is said to be
odd if f(—x)=—f(x) forall xin its domain.
Note: Odd functions are symmetric with
origin.

Example: x, x°, sinx are odd functions.

>
o

Example: Check whether the following functions is odd or even.

(i) xsinx+x> (i) 0053 X (i) x*—2x+1
X
() f(x)=xsinx+x’ (i) f(x) = Coix
X
f(=x) = — xsin(—x) + (—x) f(=x)= COS(‘?)
(=x)
=xsinx+x =_COS3X
X
A ==/ ()
o f(x) is even o f(x) is odd

(i) f(x)=x"-2x+1
f(x)= (=x)" =2(-=x)+1

=x>+2x+1

# f(x) or = f(x)

.. f(x) is neither odd nor even
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Limits

(a) Letaregular polygon be inscribed in a circle of given radius. Consider the following points.

i. The area of the polygon cannot be greater than the area of circle however large the number of sides
may be.

ii. Asthe number of sides of the polygon increases indefinitely, the area of the polygon continually
approaches the area of the circle.

iii. The difference between the area of circle and the area of the polygon can be made as small as we
increasing the number of sides of the polygon.

This is expressed in calculus by saying that the limit of the area of polygon inscribed in a circle, as the
number of sides increases indefinitely (or approaches infinity), is the area of circle.

1 1 1
(b) Consider the series 1+5+2—2+?+ ...... whichisa G.P. Let S, be the sum of n terms. Then

1 1—i
211 1 1 .
Sn:—1:2 1_2_,, =2———. Here we notice that
1——
2

(i) S, cannever be greater than 2.
(ii) S, continually approaches 2 as n increases.
(ii) The difference between 2 and §, can be made as small as we increases the value of 7.

Lt
This is expressed in symbols as S =2 or S, —>2asn— 0.
n—> o0
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(c) If f(x)=x’, then the slope of the line through the

2
points (2,4) and (x,x) on the graph of f is al 24
X

AS x approaches 2, these lines become closer to the line /
which is the tangent line of 1 at (2,4).

Thus the slope of / is obtained as the limit of the slope

x*—4 I Lt x*—4
. Le.
x—2 x—>2x-2

v

(d) Let us find the limit of a function
3+x

Case(1): Let x be greater than 0. Case(2): Let x beless than 0.

(i) When x is greater than 0,

2
is less than — (i) When x isless than 0,

: 2
is greater than 3

3+x +Xx
. 2 2 . 2
(ii) When x approachesto 0, comes nearer to — | (ii) When x approaches to 0, comes nearer to —
3+x 3 +Xx 3
2 2 2
(iii) The difference between 3 and — can be (iii) The difference between 31s and — can be
+x +Xx
made less by giving smaller value for x. made less by giving smaller value for x.
2
Therefore we say that the limiting value of —— is | Therefore we say that the limiting value of is
3+x 3+x
2 2
3 when x approaches 0 through real numbers 3 when x approaches 0 through real numbers
greater than 0. less than 0.
Lt Lt
In symbol we write 2 = 2. (D In symbol we write 2 = % N )
x—>0+3+x 3 x—>0-3+x 3
Combining (1) and (2), we write 2 2
x—>03+x 3
(e) Consider the expression S
To obtain the limit let us evaluate the values of the function for certain values of x close to 0.
4 40 400 4000
sin x 0.900316 0.99897 0.9999897 0.99999989
X
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sin x Lt sinx
From the table, we observe that —— approaches 1 as x approaches 0. Therefore —=1
X x—>0 x
Definition: A function f(x) is said to tend to a limit / when x tends to 'a' if the difference between

f(x) and / can be made as small as we please by making x sufficiently near 'a' and we write

Lt
f(x) =L
X —>a
Note:
L1 | oy
(i) =+ as x>0+ (i) —— - as x—>0- (iii) ——0 as x >t
X X X
Lt x*— Lt x—
Find ¥ -1 Find ¥ -1
x—>1x-1 x—>1x-1
Lt x*— Lt x*— Lt (x—1)(x*
al 1=9, indeterminant form. x_1= (=D +x+1)
x—>1lx-1 0 x—>lx-1 x-—>1 x—1
Therefore put x=1+4. i.e. x—>1 means 7 —0 Lt

= (xX*+x+1)
x—1

Lt x¥-1 Lt (1+hy-1
x>1lx—1 h—>0(1+h)-1 =1+1+1=3

Lt 1+43h+31*+1 -1
h—0 h

3+h+h*=3
h—>0

Distinction between limit and value

Let us discuss the following cases to understand the difference between the limit and value of the
function

(i) Value and limit are different

i Lt =3)(x+3) Lt
Consider x_9= M= (x+3)=3+3=6.
x—>3x-3 x-3 x-3 x—3
x> -9 . o ... .
Value of 3 when x =3 is equal to 0 which is indeterminate
x —

(ii) Value and limit are same
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Lt
x +3x+5=0+0+5=5.
x—0

Value of x*+3x+5 when x =0 is also 0+0+5=5.
(iii) Both the limit and value of the function exist but may not be equal.

_ 0, if x#1
Consider f(x)=
Lif x=1

Lt
Here the valueat 1is 1. i.e. f(1)=1. Butthe limitat 1is 0. i.e. . f(x)=0
x—

(The limit of a function at a point does not depend on the value at that point. It depends only on the
values taken at nearby points.)

(iv) Sometimes value of the function may exist but limit may not exist

Find ' [x].
x—3

Here value of the function f(3)=[3]=3
The numbers 3.01, 3.002, 3.0003 and 2.99, 2.998 are very close to 3. If we take the values of f(x) at

these points, they are 3, 3, 3, 2, 2. Not all of them are close to 2 and not all of them are close to 3.
Therefore the limit does not exist.

(v) Sometimes limit may exist at a point, but the point may not in the domain of f(x).
Lt
Find xsin l
x—>0 X

Here the function is not defined at x=0.

We know that —1< sinl <1. Therefore —x < x.sinl < x. Taking limit throught the inequality, we have

X X
Lt 1
xsin—=0.
x—0 X
Left Limit of f(x) is denoted by Right Limit of f(x) is denoted by
~ f(x) =1 as x approaches afrom the , f(x)=1 as x approaches afrom the
xX—a X—a
left. right.

Thus the limit of f(x) exists if left and right limits are equal.

Consider the Heaviside function

When ¢ approaches 0 from the left, H ()
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0, if t<0
H@)=| "
Lif t>0
H(t)
1

approaches 0.

When ¢ approaches 0 from the right, H(¢)
approaches 1.

t
OH (¢) does not exist.

Note: The line x=a is called the vertical asymptote of the curve f(x) if its limit approaches « if x > a.

Lt 2x
x—>3 x-3

Find the value of

When x approaches 3 from left (i.e. smaller
than 3), denominator becomes very small
negative number but numerator is 6 and

Lt
hence 2x__ —

x—>3 x-3

Lt 2x
x—>3"x-3

Find the value of

When x approaches 3 from right (i.e. larger
than 3 ), denominator becomes very small
positive number but numerator is 6 and

Lt 2x
hence =0
x—>3" " x-3

Determine the infinite limit of

Lt 2+x
x—>-3" x+3
When x approaches —3 from left (i.e. smaller
than —3), denominator becomes very small
negative number but numerator is —1 and

Lt 2+x

=00

x—>-3 x+3

hence

Determine the infinite limit of

Lt 2+x
x—>-3"x+3
When x approaches —3 from right (i.e. larger
than —3), denominator becomes very small
positive number but numerator is —1 and

Lt 2+x
x—>-3"x+3

hence

CALCULATING LIMITS USING THE LIMIT LAWS

In this section we use the following properties of limits, called the Limit Laws, to calculate limits.

Suppose that c is a constant and the limits lim f (x) and lim g (x) exist. Then
X—a X—a

LIm[f(x) +g(x)] = lim f (x) + lim g (x)

3.lim[cf (x)] = clim f (x)

2. lm[f(x) — g()] = lim f (x) — lim g (x)

4 lIm[f()g(x)] = lim £ (x) - lim g (x)
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f) _ x_,a
5. ;1C—>ag(x) = im o 1f llm gx)=0

If f(x) = g(x) when x # a, then lim f (x) = lim g (x), provided the limits exist.
xX—a xX—a

Lt Lt
If f(x)<g(x) forall x, then f(x)< g(x)
xX—a xX—>a

Rules to find the limit

(i) Take the value of f(x) at x=a. Ifitis notindeterminate, it is the limit at a.

(i) Ifitis indeterminate, cancel out the common factor in the numerator and denominator and then take
the value at a.

(iii) Or expand the products, simplify and take the value at a.
(iv) Sometimes conjugate surds can be used to simplify and then take the value at a.
(v) Some standard formulas for finding limits can be applied.

Solved Problems on Limit of a Function

L L
1. Evaluate (i) x—iO(x2+COSX) (ii) x_io(xcosx) (iii) x—iO%
_ Lt , . Lt Lt (xcosx)
(i) x—)O(x +cosx) (ii) x_)o(xcosx) (iii) xﬁom
Lt Lt Lt Lt I
:x—>0( ) x_)()(cosx) —x_)o(x)xx_)o(cosx) ) x—iO(xcosx)
- Lt
=0+1=1 =0x1=0 (x” +cosx)
x—0
1
L 2_ Lt ?
2. Evaluate ! 2x—4x 3. Evaluate M
x—=>1 x"-3x-4 x—>-1 x"-2x-3
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Lt x? —4x Lt x(x—4)

x—=1 xX*-3x-4 x—>1 (x—4)(x+1)
B Lt X
x>l (x+])

Lt
x! cosgzo.
x—0 X

4 Prove that

We know that —1< cosl <1.
X

Therefore —1< cos % <1
X

1
—x* <x*.cos—<x*.
X

Taking limit through out the inequality, we have

Lt 1
0< x7.cos—<0
x—0 X

Lt
x cos—=0.
x—0 X

x+1, if x#1

. Lt . _
. Find x_)lf(x)lff(X)_S, if x=1

5 Evaluate

Lt

x—5

Lt Lt
Here f(1)=5. But f(x)= x+1=1+1=2
x—1 x—1

Evaluate lim | x|.
x—0

ifx=>0

Recall that|x| = {ix if x <0

Since |x| = x for x > 0, we have, lim |x| = lim x =0
x—-07t x—-0*t

Lt
x—>-1 x*=2x-3

27 +3x+1 Lt (2x+1)(x+])
T xo-1 (x=3)(x+1)
Lt (2x+1)
x>l (x=3)
-1 1

T4 4

2x* —3x+4
x—5

2x* =3x+4=50-15+4=39

For x < 0 we have |x| = —x and so lirgl | x| = lirgl(—x)zO
x—->0" x—->0"

Therefore lim | x| = 0.
x—0

Prove that lin(} lxil does not exist.
X
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limm= lim = lim 1=1

x—0t X x-0t X x—0t
. | x| . —-x .
lim == lim == lim (1) = -1
x-0" X x-0" X x—-0"

Since the right and left-hand limits are different, it follows that lin& % does not exist.
X—

9 Find Lt[}x—h—zﬂifitexmt&
x—2

We know that

x=2, if x-220
—(x-2), if x-2<0
x—=2, if x>2
2—x, if x<2

|x=21]=

Lt Lt
- [3x—|x-2[]= [Bx-2+x]=6-2+2=6
x—2 x—2

Lt

Lt
: [3x—|x-2[]= [3x-x+2]=6-2+2=6
x—2 x—2

Lt
Since left and right limits are equal, [3x—|x—2|]:6.
x—2

. Lt 2x—-1 . .
10 Find ——— if it exists.
x =05 [2x’ - x°

Consider
‘2x3 —xz‘ :‘xz‘.|2x—1| =x"|2x—1|

2x—1, if 2x-1>0

But |2x—-1|=
| | -(2x-1), if 2x-1<0

| 2x=L if x>05
C=@2x-1), if x<0.5

ot = | = | 2x -1 = = 2x = 1) if x <05

. Lt 2x-1 Lt 2x-1 1
'x—»&Sﬂzf—xﬂ x> 0.5 —x*2x=1)  (0.5)
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Lt
11 Show that 3fx] does not exist where |_x_| is the greatest integer function
x—>

(i.e. largest integer less than or equal to x)

Lt Lt
Here +fx1:3 and
x—3

not exist.

- [ x]=2. Since left and right limits are not equal, limit does
x—>

Substitution theorem for limits

If Lt f(x)=c, then Lt g[f(x)] Lt
X—>a

X —>a g[y]

:y—)C

Lt Lt
To find the limit g[ f(x)], substitute y for f(x) in g[f(x)] and then find g[v]
xX—a y—c

Solved problems by applying substitution theorem

_ Lt -
1. Find 1-x
x—0

Put y=1-x

When x>0, 1-x> >1; ie. y—1

Lt Lt
‘. l—x2= =1
x—0 y—)l\/;

Lt 3x+9 . Lt
exists.

2. Check whether s
x—>—3|x+3| 3. Find s COS x+g

Let x+3=y and hence
x — -3 means y — 0.
Lt 3x+9 Lt 3y
x—>—3m - y—)OM

s
Put =x+—
Y 6

T T T T T V4
When x> —, x+—=—+—>—; ie. y>—
3 6 3 6 2 2
. Lt y
Consider 3 0 ==3.1=3
—> 0+
4 d Lt Lt
Lt y T T
Also 3 —=3.(-1)=-3 T COosS| Xx+— |= 7 cosy=cos—=0
y—>0——y X—>§ y—>5 2

Since the right and left-hand limits are different,
it follows that given limit does not exist.

75| Page
https://doi.org/10.5281/zenodo.15288097



Lt Lt

4. Find 7 ~sin2x 5. Find 7 (secx—tanx)
X —>— x— =
12 2
Put y=2x Put y=--x
T :
When When x—)z, 5—x—>0, ie. y—>0

b4 T . b4
X—=>—, 2x=2——>—; ie y—>—
12 12 6 6 Lt

Lt V4 V4
7 (secx—tanx)= sec ——y}—tan ——y
Lt Lt x—)E y—)O 2 2
" z ~sin2x = T A/Siny
xX—>— y—o>— Lt
12 6 = cosecy —coty
y—0
Put z=siny Lt 1 cosy
y—>0 siny siny
When I
T 2 U 1 _ it l-cosy
y—)g, Slny:SH'lg—)E, l.e. Z—)E y_)o siny
2sin??
Lt Lt 0 - e =7 o
7 Nsin2x = 1 \/;=\/: y—>0 2sin2 cos?
xX—>— e 2 2 2
12 2 y
~ Lt SlnE _9 0
Y20 s 1
Infinite Limits
Here we will discuss the limits whose value is infinity or minus infinity.
1
Consider the limit of the function —- at x=0.
X
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7 | S

_ — =00, since -
x—>0 x° |

1 1 oL

3 = (e 0] | |

(=0.000...1)~  0.000000......1 [t

Lt 1 . 1 1 LT
— =, since > = =00 !
x—0 x (0.000...1)7  0.000000......1
Lt 1
Hence _2=w " L L1 L1 Lo 1
x—>0 x -1 0 7 "
Solved problems on infinite limits
. Lt -1 . Lt -1 Lt -1
1. Evaluate (i) . ——= (i) — (7ii)
x—-2" x+2 x—>-2" x+2 x—>-2 x+2
Lt -1 ) -1 -1
=—o0, since = =—o0
x—=-2" x+2 —1.9999999...+2 0.000......1
Lt -1 ) -1 -1
=o0, since = =
x—>-2 x+2 -2.0000...1+2 -0.000......1
From the above —— does not exist.
x—>-2 x+2
¥
I 5
|I
||| -
| | : | |
IR T
(I
1
1 B
'l
|
|
1| -
Lt Lt Lt
2. Evaluate (i) 7" tanx (i) 7~ tanx (i) o tanx
xX—>— xX—>— xX——
2 2 2
Let us draw the graph of tanx
7T | Page
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Lt Lt
From the graph it is evident that z* tanx= -0 and g~ tanx= oo
x> = x> =
2 2
Lt
From the above o~ tanx does not exist.
xX—>—
2
Vertical Asymptotes
Lt Lt ) ) .
1. If . f(x)=00 or , f(x)=-o, then the line x=a is called vertical asymptote
xX—a x—

of the graph of f. (i.e. f has infinite right hand limit at a)

Lt t
2. If ~ f(x)=o or ~ f(x)=-, then the line x=a is called vertical asymptote
xX—a

xX—>a
of the graph of f. (i.e. f has infinite left hand limit at a)

Consider the graph of log, x

Lt —
Here 0 log, x=— . Hence x=0 is the e w

X —>

vertical asymptote of log, x.

1. Let f(x)= x2+21. Find all the vertical asymptotes of the graph of f.

X -
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Lt x+2 Lt x+2 1 Lt x+2 Lt x+2 1
= — —o0. Also = — =

x>1" ¥¥=1 x—o1" x+1x=1 x>-1 =1 x—>-1 x-1x+1

Here

Therefore x=1 and x=-1 are the vertical asymptotes of the graph of f.
Limits at infinity

Here the limits of f(x) when x approaches very large values in either positive or
negative sense will be discussed.

Lt Lt
f(x) or S (x)
X —>® X —> —00
Lt 1 : - .
Results: 1. — =0, where n is positive rational number.
x—ow x"
Lt 1 . . . n s
2. — =0, where n is positive rational number and x" is defined for x <0.
X—>—-0 x

3. If f(x)=ax"+a, x"" +...+a, is a polynomial of degree n, then

Lt Lt Lt Lt
f(x)= ax" or f(x)= a,x
X —> 0 X —> X — —0 X — —0

n

Solved Problems

Lt Lt Lt Lt
1. 5x° —2x* —4x = x3(5—g—i] 2. 5x° —2x* —4x = X3[5—%—i2j

X —> 00 X —> 0 x X X —>—o0 X —>—00 X x
=5(0) = 5(~0)
=00 = —00
Lt Lt -
3. sinx 4, xl
X —>00 x—owo x+1
!
We know that sinnzr =0, V n Lt x-1_ Lt . X
Also sin(2n+1)Z=+1, V¥ n XYoo atlx—eo x(1+1]
2 X
Therefore sinx never exceeds 1 even for Lt (1—)’) 1
large values of n. S0 (1+y) "
L | =0
sinx does not exist. 140

x> w
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Lt

N2x* +1

Evaluate 6.
x—o 2-3x
1
2
i+l Lt e 2+ 3

Lt 3e4x _ 2e—3x
x> o 5e* 44 —2e7"

7. Evaluate

Since limit is «, the largest exponent In the
denominator should be taken out as common term

Lt 3e4x _26—3):
x> o 56" +4e* —2e™

Lt
x> M (5 +de™ —2e‘5")

Lt 2x*+1

Evaluate
xX—>-o 2-3x

X
Lt —2+0
X — —00 (0—3)
_\2
3
Lt 3e4x_2e—3x

8. Evaluate 7 > —
x—>—0w0 5S¢ +4¢™ —2¢

Since limit is —oo, the lowest exponent In the
denominator should be taken out as common

term
Lt 3e4x _ 2e—3x
x— -0 Se* +4e* —2¢

X

Lt e’ (365" — 2e_2’”)
R (565" +4e* —2)
Lt (365)‘—2672)‘)

x>0 (57 4™ -2)
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Lt N Lt (2-3v-4x%)
9, Evaluate e 10. Evaluate e
X —> —00 X —> 0
Put y=-—x Consider
When x — -, then y-—> oo Lt (2 3x—4x2)—
X—>o® X —> 0
‘ Lt N Lt .
Do © =y_>oo € Therefore
) . Lt (2-3x-4x?) o
But ¢’ >1+y for all positive y. e = e”=0
X —> o
1 1
Then e :—Sl—
y t+y
Lt “3x+dx?
It 1 9. Evaluate e(23 )
But — =0 X —>—0
y—o l+y
Consider
Therefore Lt e’ =0 Lt
yow B (2—3x+4x2)= B
X — —© X —> —0
Lt y
. e =0 Therefore
X —> —0
Lt 8(2—3x+4x2) C oo
X —> —00

Horizontal Asymptote

The function f(x) will have a horizontal asymptote at y=1 if

=1 or " r=i

X —> 0 X —> —0

(123 123
Lt x2—2x+3_ Lt x x X Lt x x X

Consider - = = =
X—>w X +2x"—x Xx—>© x3(1+1 lj x—)oo( 1 IJ

Therefore y =0 is the horizontal asymptote to the given function.
Lt Lt
Note: If f(x)<g(x), then f(x)< g(x)
xX—a X—a

https://doi.org/10.5281/zenodo.15288097

(—4x2) = —4(o0) = —o0

(4x7 ) = 4(c0) =0
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Lt Lt Lt
Squeeze Theorem: If f(x)<g(x)<h(x) and f(x)=1, h(x)=1, then g(x)=1.
X —>a X —>a X—>a

Lt .1
Use squeeze theorem, to show that x*sin—=0.
x—0 X

We know that —I<sin—-<I. Multiply throughout by x’.

X
2 2 . 1 2
—x"<x"siIn—<x
X
Lt X Lt Lr .1
Here —-x"=0 and x"=0. Hence by squeeze theorem x“sin—=0.
x—>0 x—>0 x—>0 X
¥ _xj
g =
X sin—:
-
x
-
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1. Let f(x):fcosx—|, —T<x<r1w

Lt
(a) Sketch the graph of f(x). (b) Find Of(x)
xX—
] Lt Lt )
(c) Find _f(x) (d) For what value of «adoes f(x) exist?
x—>>r/2 xX—a
1 1!
T T
T a —iT _E E T
_;_13— _E E j_ el = - A
+ -1 [ .
. Jx)=[cosx]
fix)=cosx

Since —1<x<0in [—n,%}, we have f(x)=[cosx|=-1 in the interval [—ﬂ'%j

Since 0<x<l1lin [—%,O)U(O,%}, we have f(x):|_cosx—|:O in [—%,OJU(O,g}

: (7 . . V4
Since —1<x<0in (5,72':|, we have f(x):l_cosx_|:—1 in the interval (5,7?:|

, Lt Lt Lt
Since f(x)=0= f(x), we have f(x)=0.

x—>0 x—>0" x>0
Lt Lt

Also /- f(x)=0 and fx)=-1

X7 x—>r/2°

Lt
From the diagram, it is observed that f(x) existsforall a in (-z,7) except at
X—>a

=

Il

[+
NN
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Continuity
Definition: A function f(x)is said to be continuous at a point '¢' in its domain if f(x)= f(a).
X a

A function f(x) is discontinuous at a point 'a' in its domain if it is not continuous at a.

t t
Result: A function f(x) is continuous at a point 'a' then ACIES f()= f(x)= f(a).
xX—a xX—a xX—a

Example: From the given graph, determine whether f(x) is continuous at x=-2, 0, 3.

¥
(-2, 2?. S
||II.
1 — .."
. !Plfl:l,lj] JIIIII..I.'
30
| | | | ! | | l: M ) |
e 12 3 4
I'I [—2,—11\ n .[3’_1)
| 2k
Let x=-2. Let x=0.
Here f(-2)=-2. Here f(0)=1.
M rw=2 M=
x— -2 = x—0" Y=
Lt Lt
LS =-1 f()=1
x— -2 x—0

Lt _
f(x) does not exist

So f(x) is not continuous and it

Lt _1
x—0 J)=

So f(x) is continuous.

is called jump discontinuity.

Let x=3.
Here f(3)=-1.

Lt _0
g /=

Lt
_f(x)=0
x—3

So f(x) is not continuous and it
is called removable discontinuity.
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Where are the following functions discontinuous?

2
x —3x+2
at x#0 — atx#2

1
i) f(x)=|x> Gii) f(X)=| x—2

Lat x=0 2 , at x=2

x*+x—1

(@) S =—

(i) Here f(1) is not defined. Hence f(x) is discontinuous at x =1.

(ii) Here f(0) is defined. But OLZ does not exist. .. f(x)is discontinuous at x=0.
x—>0x

Lt x*— Lt - - Lt
(iii) Here f(2)=2 is defined. But X m3xk2 (wjz

(x-1)=1
x—>2 x-2 x—2 (x=2) x—2

Lt
Here f(x)# f(2). .. f(x)is discontinuous at x=2.
x—2

Discuss the continuity of f(x)=tanx

sin x

We know that f(x)= is continuous at all points

cos X
exceptat cosx =0. This happens when

SR
(ST

x=x2n+ 1)%, n is integer. -

Therefore f(x)=tanxis discontinuous at
x=tZ 27
2 2

9 oo

logx+tan~' x
2
x -1
We know that logxis continuous for x>0 and tan”

Discuss the continuity of f(x)=

'x is continuous in (—o,0) and hence Nr is

continuous in (0,0). Also x*—1 is continuous everywhere. Therefore f(x) is discontinuous at

x*—1=0. ie.x==*1.1e. f(x)continuousat (0,1) and (1,0).
To verify whether a function is continuous at a point, the following theorems may be useful.

Theorem: If / and g are continuous at a point ¢ and c is a constant, then the following are also
continuous at the point a: f+g, f—g, fg, cf, A if gla)#0
g

Theorem: Any polynomial is continuous in everywhere in R .
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Theorem: Any rational function is continuous whenever it is defined.

Results: All trigonometric, exponential and logarithmic functions are continuous in its domain.

Theorem: If f(x) is continuous at 'b' and Lt g(x)=> then L flg(x)]=f(b).
X —>a X —>a
Lt Lt
OR fle)]= s { g(X)} = flg(@)]
xX—a xX—a

i.e. fog iscontinuous at a.(A continuous function of a continuous function is continuous)

Where is the function /(x) = sin(xz) continuous?
Let g(x)=x"and f(x)=sinx, hence h(x)=(fog)(x)=sin(x")

Here g(x)and f(x)is continuous everywhere and hence (fo g)(x) is continuous.

Definition: A function f(x)is said to be continuous from the right at a point 'a'if

Lt
LS = f(a).
—a

Lt
A function f'(x)is said to be continuous from the left at a point 'a'if f(x)= f(a).
X—a

Solved Problems

1 Show that the function f(x)=1-+/1-x" is continuous in [-1,1].

Lt Lt > 3
Suppose —1<a<1 then, fx)= 1—\/1—x =1—\/1—a = f(a).
X —>a X —>a

Hence f is continuousin —l<a<l.

Lt

Lt
Also L f(x)= 1-+1-x*=1=f(=1). .. f is continuous from the right at -1
x—>-1 x—>-1

Lt Lt
And f(x)= 1-+1-x>=1= f(1). .. f is continuous from the left at 1.
x—1 x—1

Hence f is continuous in [-1,1].

2 f(x)= x
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The greatest integer function f(x)= x is discontinuous at all integers. For example

Lt Lt
~x =1 and L, x =2 and f(Q2)= 2 =2.
x—2 x—2

3 Show that f(x)= Jx is continuous from right at 0.

Here f(x)= Jx is not defined for x <0. Therefore it is not
continuous at 0.

Here £(0)=+/0=0
and . f(0=+0=0.
x—0

Hence it is continuous from right at 0.

0 ( <0
4 Show that f(x)=|" f o is continuous from the
I, for x>0

right at 0 but not continuous from the left at 0.

Here f(0)=1
Lt
and . f(o)=1.
x—0

Hence it is continuous from right at 0.

Lt

But o f(x)=0. Hence it is not continuous from left at 0.
x—

5 Show that /(x)=+/1—-x" is continuous in [-1.1].

Since 1-x*>0 ifand only if —1<x<1. Hence the domain of f(x) is [-L1].

F@)=Ax

, Lt Lt > > . . )
Since f(x)= \/l—x :\/l—a =f(a) for —1<a<]l1, f(x)iscontinuousin —l<a<l
X—>a X —>a

Lt Lt
Also . f(x)= . V1=x> =1-1" =0= £(1) . Hence f(x) is continuous from left at 1.
x— x—

https://doi.org/10.5281/zenodo.15288097
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Lt Lt 5 > . . .
and Sfx)= +\/l—x :\/1—(—1) =0= f(-1). Hence f(x) is continuous from right at —1.
x—-1 x—>-1

Hence f(x)is continuous in [-1,1].
ex’+2x, x<2

6 For what value of c is the function f(x) continuous in (—w,x) where f(x)=| | 5
X —cx, x2

Lt Lt 5 Lt Lt
f(x)= ex"+2x=4c+4 and L Sf(x)= X —cx=8-2c
x—>2 x—>2 x—>2 x—2

Given that f(x) is continuous at x =2. Hence

Lt
x)= X
x—>2_f( ) x—>2+f( )
4e+4=8-2c
6C =4
c=2
3

Therefore f(x) continuous in (—o0,0) when C =§

L, if x<3
7 If f(x)=|ax+b, if 3<x<5,determine the values of ¢ and b, so that it is continuous.

7, if 52x

Given that f(x) is continuous in the domain. We discuss the continuity at x=3 & x=5.

Lt Lt Lt Lt
f(x)= ~1=1 and f(x)= , ax+b=3a+b
x—3 x—3 x—3" x—3

Lt Lt Lt Lt
L Sf(x)= ., 7=7 and f(x)= _ax+b=5a+b
x—5 x—5 x—5 x—5
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Solving (1) & (2),we have a=3, b=-8.

8 Find the values of ¢ and bthat make /' continuous everywhere on the real line.
x4
x-2"
f(x)=lax’ —=bx+3, if 2<x<3
2x—a+b, if x=>3

i x<2

Given that f(x) is continuous in the domain. We discuss the continuity at x=2 & x=3.

Lt x*-4 Lt (x-2)(x+2)

= =2+2=4
x—>2 x-2 x—->2 (x=2)

Lt 3
x—>2 S ()=

Lt L
Sx)= , ax"—bx+3=4a-2b+3
—2 x—2

Since left and right limit at x =2 are equal, we have 4a-2b+3=4......... Q)
Lt Lt 5
f)= _ax"—bx+3=9a-3b+3
x—3 x—3

Lt

Lt
A E , 2x—a+b=6-a+b
x—3 x—3

Since left and right limit at x =3 are equal, we have 9a—-3b6+3=6—-a+b......... (2)

From (1) and (2), we have

4a-2b=1........ 3)

10a—4b=3........(4)

2x(3)= -8a+4b=-2...... %)
Adding (4) and (5), 2a=1 ie. a :%

From (3), 4.%—2[7:1 ie. 2b=2-1 i.e.b:%
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-2, x<-1
9 For what values of ¢ and b,is f(x)=|ax—b, —1<x<1 continuous at every x?
3, x=>1

Given that f(x) is continuous in the domain. We discuss the continuity at x=—-1 & x=1.

Lt Lt
f)= _2=2
x——1 x—>-—1
Lt Lt
L S(x)= , ax—=b=-a-b
x— -1 x——1
Since left and right limit at x=—1 are equal, we have —a-b=2......... 1))

Lt Lt
f(x)= _ax—b=a-b
x—1 x—1

Lt Lt
L S(0)= . 3=3
x—1 x—1
Since left and right limit at x =1 are equal, we have a—b=3......... (2)

Adding (1) and (2), —2b=5 ie. b :_%

From (2), a=3+b:3_§=l
2 2

. x* sin( j, x#0 . .
10 Show that the function f(x)= X is continuous in (—,x).
0, x=0
Here f'(x) is the product of polynomial and composite of trigonometric and rational function, it is
continuous in (—0,0) U (0,0).

1 1
We know that —1<sin—<1 and hence —x*<sin—<x*
X X

Lt
Also x—)O(_X4):O and x—)O(X4):O'
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Lt
Therefore by Squeeze theorem, x* sinl =0= f(0)
x—>0 X

Therefore f(x) is continuous at 0 and hence f(x) is continuous at (—o,).
X +4x—12

11. Check whether f(x)=| x>-2x X is continuous or notat x=2.
6, x=2

Given that f(2)=6. Now let us find the left and right limit at x=2.

Lt F) = Lt x*+4x-12 Lt (x-2)(x+6) Lt (x+6)_§_4
x—>2 x—2 X -2x x—>2  x(x-2) x—>2 x 2

Lt £ = Lt x*+4x-12 Lt (x-2)(x+6) Lt (x+6) _8 _,
x—2" x—2" X -2x x—>2" x(x-2) x—>2" x 2

Lt Lt
Here fx)= S = f(2).
x—2 x—>2

. f(x) is not continuous at x=2.

The Intermediate Value Theorem ¥

Suppose f(x) is continuous in the closed interval
[a,b] and let N be any number between
f(a) and f(b), where f(a)#f(b). Then there i R e v
exists a number c in (a,b) such that f(c)=N.

. . . f(“) i flc)
(i.e. a continuous function takes on all values ' '
between f(a) and f(b)). It is used for locating the
roots of an equation. : : =
a c ¢ c &

Show that there is a root of the equation x’ +x* +x—2=0 lies between —1 and 1.

Let f(x)=x"+x"+x—2, which is continuous. Assume that a =—-1, b=1.
Here f(~1)=—1+1-1-2=-3 and f(2)=8+4+2-2=12.

Let N =0, lies between -3 and 12.
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Therefore by intermediate value theorem there exists a number csuch that f(c¢)=0 and c is the root of
the equation.

Show that there is a root of the equation 4x’ —6x” +3x—2 =0 lies between 1 and 2.

Let f(x)=4x’—6x"+3x—2, which is continuous. Assume that a =1, b =2,
Here f(1)=4—-6+3-2=—-1 and f(2)=32-24+6-2=12.
Let N =0, lies between -1 and 12.

Therefore by intermediate value theorem there exists a number csuch that f(c)=0 and c is the root of

the equation.
Tangent Lines

Let y = f(x) beacurveand P[a, f(a)] & O[x,f(x)]
be any two points on it. Then the slope of the secant
line PQ is J)=fa) f

xX—a secant line P Q

(af(a) (x,0(x))

Let Q approach P along the curve by letting x

approach a. Then we get a tangent at P with slope

fangent
m. st 4

line

Therefore the tangent to the curve y = f(x) at P[a,f(a)] is a line through P with slope
Lt fx)-f(a)

X —>a X—a

m =

Therefore the equation tangent of / at P[a, f(a)] is y— f(a)=m(x—a)

Lt f(a+h)- f(a)
h—0 h '

Let h=x—a and x=a+h then m=

Solved Problems
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1 Show that there is a tangentto f(x)=x’-1 at (1,0)

and find its equation.

Lt f)-/fO)

x—1 x—1

We know that m =

L (¥-1)-(-D
x>l

x—1

Lt (x—l)(x2+x+l)

:x—)l

x—1

=1+1+1=3

Therefore the equation tangent of /* at P[1,0] is
y—0=3(x-1)

y=3x-3

2  Find the equation of the tangent line to
the parabola y = x"at (1,1).

Slope of the tangent is

Lt f(x)-f(a)

m:
X—a xX—a
Lt f)-fQ) _ Lt x*-1
x—1 x—1 x—1 x-1
Lt —
(x 1)(x+l):1+1:2

x>l x—1

The equation of tangent at (x,,,) is
y=n= m(x_'xl)

Therefore the equation of tangent at (1,1) is
y—1= 2(x—l)

ie. y=2x-1

F)=x-1

tangent line

3 Find the equation tangent to the parabola
f(x)=x"—5x+5 atapoint (3,-1).

Slope of the tangent is

=hiof(a+h})l_f(a) where f(x)=x>—5x+5

Lt (a+h)Y -5(a+h)+5—(a’—5a+5)

“h0 h

Lt @*+h*+2ah-5a-5h+5-a’+5a-5

h—0 h

Lt W’ +2ah-5h Lt h(h+2a—5)_2a_5

h—0 h h—0 h
Here a=3 and hence m=2a—-5=6-5=1
Therefore the equation of tangent at (3,-1) is
y+1=1(x—3) ie. y=x-2
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4 Find the equation of the tangent line to the

hyperbola y = 3 at (3,1).
X

Slope of the tangent is

Lt fla+h)-f(a)
T h—0 h

_ Lt fG+h)-f(03)
h—>0 h

3
_ Lt 34p
h—>0 h

Lt 3-3-h
h—03+h)h

Lt -1 1

Th0(G+h) 3

The equation of tangent at (x,,y,) is
Y=—n =m(x—x1)

Therefore the equation of tangent at (3,1) is

y—lz—é(x—3)

3y—3=—x+3 ie 3y=—-x+6

Note: If f is continuous at a point ¢ and

Lt —
m= M =40, then the vertical
X—>a X—a

line x =a is the tangent.

Note: If f is continuous at a point ¢ and

Lt —
m= M does not exist, then f hasno
X —>a X—a

tangent at x=a.

1
Find the equation tangent to 7 (x)= x> at

(0,0).
Obviously f is continuous at a point 0 and

Lt f(x)-f(0)

m:
x—0 x-0
1
Lt x3-0 Lt -§ Lt

= = X = LZZCX)
x=>0x-0 x-—>0 x—>0 3

X

x =0 is the tangent line to the given f'.

Show that there is no tangent to f(x)=| x| at (0,0).
The right hand limit at 0 is

Lt f@)-f©) _ Lt |x|-0_ Lt x-0
x—0" x—0

_ —1
x—=>0"x-0 x>0 x-0

The left hand limit at 0 is

Lt f()-f(0) _ Lt

x—>0 x—0

x|-0_ Lt

—-x-0

x>0 x-0 x>0 x—0

Lt -
Hence M doen not exist and is not
x—0 x—0
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infinite. Therefore f has no tangent at (0,0).

The Derivative

Let a be a number in the domain of a function f . The derivative of a function f ata point a, denoted by

Lt f()-f@)

—>a X—a

f(a) is f@=_

Note:

Lt f(a+h)-f(a)

1 The equivalent form of f'(a) is f'(a) =
h—0 h

2 The derivative as a function is given by f'(x) =

Lt f(t)— f(x) Lt f(x+h) - f(x)
X

or f'(x)=
t—>x t- S h—0 h

3 Let y = f(x) be afunction. The different notations for derivatives are y'(x) or f'(x) or ? or % f(x)
X

DEFINITION

A function f is differentiable at a if f'(a) exists.
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A function f differentiable on an open interval (a, b)[or (a, ®) or (=, a) or (—oo,00)] if it is
differentiable at every interior number in the interval.

A function f differentiable on an closed interval [a, b] if it is differentiable at every interior and end
numbers in the interval.

THEOREM : If f is differentiable at a, then f is continuous at a.

NOTE :The converse of Theorem is false; that is, there are functions that are continuous but not
differentiable.

Interpretations of Derivative

d
1 The differential coefficient d—yof the function y = f(x) at any point of the curve represents slope or
X

gradient of the curve at that point (equivalently the slope of the tangent at that point).

2 If f(x) represents a quantity at x, then the derivative f’(a) represents the instantaneous rate of
change of f(x) at x=a.

Note
dy . .
If — =0, then the tangent is parallel to x-axis.
X
dy . : .
If I = o0, then the tangent is perpendicular to x-axis.
X
Problems on derivative by definition.
1. Show that the function f(x)=x" is derivable on [0, 1]

Let 'a' be any interior point of the interval [0,1]. Then

L fo-f)_ Lt x-a*_ L (-a)x+a)_

f(a)= = =a+a=2a, exists & finite
X—a xX—a X—>a x—a Xx—a x—a
Lt - Lt 2 _ Lt
f(0)= +M= . 0 . x=0, exists & finite
x—0 x—0 x—>0 x-0 x—-0
Lt - Lt 2 Lt _
S = ,M= _ x_1= B w=1+1=2, exists & finite
x—>1 x—1 x—>1 x-1 x—>1 x—1

Since f’ exists at all points of the interval, f(x)=x" is derivable in [0,1].
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2.  Find the derivative of f(x)=sinx. 3. Find the derivative of f(x)=cosx.
By definition, By definition,
: Lt f(x+h)— f(x) ’ Lt f(x+h)-f(x)
X)= X)=
S h—0 h QY h—0 h
Lt sin(x+h)-sinx Lt cos(x+h)—cosx
h—0 h h—0 h
Lt sinxcosh+cosxsinh—sinx Lt cosxcosh—sinxsinh—cosx
h—0 h h—0 h
) Lt  cosh—-1 Lt sinh Lt cosh—1 Lt sinh
=sinx +cosx —_— = CoSx —sinx at—
h—>0 h h—>0 h h—>0 h h—>0 h
=sin x.(0)+ cosx.(1) =cos x.(0) —sin x.(1)
=CoSX =-—sinx
4, Let f(x)=%x2+l. Find f/'(-1) and f'(-3).
We know that We know that
, Lt x)—f(-1 , Lt f(x)-f(@3
1) = f@) - f(=1) - M @10
x—>-1 x—(-1) x—=>3 x-03)
1, 5 1, 13
—x"+1-= — X" +1-—
_ Lt 4% 4 _ Lt 4~
x—>-1 x—(-1) x—=>3 x-3
1, 1 1, 9
_ L gty _ L 4¥ 7,
x> -1 x+1 x—>3 x-3
1 2 1 2
o e e
Cx—o-1 x4+l x—53 x—3
1 1
L Z(x—l)(x+1) Lt Z(x—3)(x+3)
T x—>-1 x+1 x—53 x—3

https://doi.org/10.5281/zenodo.15288097
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Lt 1 (x=1) Lt 1 (x+3)
= —(x— = —(x
x—>-14 x—>3 4
1 1 1 3
= —(-1-)=—= = —-B+3)==
4 ( ) 2 4 3+3) 2
slope %
y
1
2
slope
F. 9
1 0 3
Results
The graph of f rises from left to right The graph of f falls from left to right
if f'(a)>0 if f'(a)<0
If f’(a)| is large, then the graph of f is If f’(a)| is small, then the graph of f is
very steep near the point nearly horizontal near the point

5. Let =x". Show that f’(x)=2x forall x. 1 L
et /()=x owthat /(x)=2x forall x 6. Let f(x)=x2. Show that f’(x):%xzfor

Lt f(6)— f(x) x>0.

tr—>x t—x

f'(x) =

o o L fO-f)
— Lt ¢ —x f(x)_t—)x t—x
I—>Xx —Xx 1 1

Lt (2 —x2
_ Lt (t—x)(t+x) i x f—x
t—>x t—x ) Lo |
Lt 2—x2 24x2

Lt Tt x t-x L1
_t—>x (t+x) (2 4+ x2
Lt ¢t—x 1
=x+x=2x :t—> PR - ‘“(a=b)a+b)=a’ b’
X t—-x - =
2 +x2
Lt 1
= 1 1
t—>x =
12 +x2
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7. Find the derivative of the function
f(x)=x>—4x+5 atapoint a.

Let f(x)=x"—4x+5

Lt fla+h) - f(a)

F@o=, 0 h
Lt (a+h)-4a+h)+5-(a’—4a+5)
h—0 h
Lt at+h*+2ah—4a—-4h+5-a*+4a-5
h—0 h
Lt K*+2ah—4h
h—0 h
Lt h(h+2a-4)
h—0 h
=2a—-4

1

1
1
2

x2 +x2 x

8. Find the derivative of the function
f(x) = x> —4x + 5 using the definition of the
derivative.

Let f(x)=x>—4x+5
Lt fx+h)-f()

S ™=, 0 h
Lt ((c+h) —4(x+h)+5)—(x* —4x+5)
T h0 h
Lt (x2+h2+2xh—4x—4h+5)—(x2—4x+5)
h—0 h
Lt (h2+2xh—4h)
T h—>0 h
3 Lt h(h+2x—4)
h—0 h
=2x—4

9. Where is the function f(x) = |x| differentiable?

If x > 0, then |x| = x and hence |x + h| = x + h.

Therefore, for x > 0, we have

Lt fx+h)—f(x)

=, 2
o) = 1 |x + h| — |x]
f'(x) = jm
_ i (x+h)—x
=i h
Yy

If x <0, we have |x| = —x and hence
|x +h| =—(x+h).

Therefore, for x < 0,
von Lt fx+h)—f(x)
F=, h

o) = Tim A
f'(x) = lim A

—(x+h) —(—x)
h—r>r(1) h

=i = (- =1
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=1

and so f is differentiable for any x > 0. and so f is differentiable for any x < 0.

For x = 0 we have to investigate

oo v SO+ h) = £(0)
FO = =
_ o 10 RI= 10
= oo h
= limm
- h-0 h
. . h, x>0
Let’s compute the left and right limits separately: We know that |z |= ’ 0
—h, x<
lim ﬂ: lim —= lim 1 =1
h—0* h h—0*h  h-ot
and
tim iy 2y 1) = -1
N L

Since these limits are different, f'(0) does not exist. Thus f is differentiable at all x except 0.

The fact that f'(0) does not exist is reflected geometrically in the fact that the curve y = |x| does not

have a tangent line at (0,0) .

10. Find by the definition of derivative, f'(x) if f(x)= Jx.

We know that

https://doi.org/10.5281/zenodo.15288097
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fi=, M Ler /e
N

0 h
Lt Jx+h=x
h—0 h

Lt «/x—i—h—\/;\/x—kh +\/;
h—0 h Jx+h++x

Lt x+h—x

:h—>0h \/x+h—\/;

Lt 1
T ho0Jx+h+x
1
2/x

Here f'(x) exists if x > 0, so the domain of f’ is (0, ).

11. Find f'if f(x) = % by definition of derivative.

(o) = iy TEH DI
1-(x+h) 1-—x
24+ (x+h) 2+x
= lim
h—0 h

1-x—-hC2+x)—(1—-x)(2+x+h)
h—0 h(Z+x+h)(2+x)

i (2—x—2h—x?>—xh)— (2—x+h—x*—xh)
~ h2+x+h)(2+x)

_ —3h
DOh2 +x + )2 +x)

_ -3
N T x+ 2 +0

—3 .
(2 + x)?
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. . xsin| — |, x#0
12. Determine whether f'(0) exists or not for f(x)= (xj

We know that
o Lt f(x+h)—f(x)
F=, I
, Lt f(h)— f(0)
0)= L7 J o7
/O h—>0 h
hsi ! 0
~ Lt Sll’lz—
T h—>0  h
Lt
= sin —
h—>0 &

0, x=0

This limit does not exist because it takes the values —1 and 1 in any interval containing 0.

Therefore f'(0) does not exist.

) ) x*sin| = |, x#0
13. Determine whether 7'(0) exists or not for f(x)= X

We know that

o Lt f(x+h)— f(x)
=, I
Lt f(h)- £(0)

fO= 0

1
h*sin——0
Lt h

WEEY
Lt 1

= hsin—
h—>0 h

0, x=0
We know that —1< sin% <1
Therefore —|h|<| A sin% < h|
. .1
ie. —|h|£hsin—<|h]|
h
Lt Lt
Also —|h|=0 and |h]=0.
h—0 h—0
Therefore by Squeeze theorem,

M hsinl-0= )
SIn— = =
h—>0 h

Therefore f'(0) existsand f'(0)=0.
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14. Find the derivative of f(x)=¢".
Lt e"-1
h—>0 h

To evaluate
By definition,

h—0 h Let y=¢"—1. Then y+1=¢" ie h=log(l+y)

Lt ex+h _ ex

h—>0 h Also, when 4 —0, y —0
o L -1
 h>0 h

Lt e¢'—1 Lt y
=e'.1=¢"

h>0 h  y—0log(l+y)
Lt 1

1

0 1
log(1+ y)”

14. Find the derivative of f(x)=x", where » is a rational number.

Case 1: When # is positive integer.

By definition,

oo Lt f(x+h)—f(x)
S=, 0 h

Lt (x+h)"—x"
h—>0 h

Lt 1‘:” n n(n—1)

= —| x"+=x""h+
h—0h

1! 2!
Lt —
= s +Mx”’2h+ ....... +h"!
h—>0|1! 2!
=nx""
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Case 3: When n=—m, where m is positive integer

: _P -
Case 2: When n =+~ where p, ¢ are positive or fraction.

integers. .
Consider
Let x=)? and a=b?. Thenas x —>a, y? —b". fxX)—fla) _x"-a"
So x > a means y —b. X—a xX—a
Consider _ x*m _a—m
S(x)-f(a) _x"-a" x—a
x—a x—a
_oa"—x"
x—a
rlq rlq X" —g™
b)) o
- 34 — b x"a"(x—a)
yp _bP
= Vb Taking limit on both sides

L fo)-fl@)_ Lt x"-a"

Taking limit on both sides -
xX—>a x-a x—ax"a"(x—a)

Lt f@)-f@)_ Lt y b’
xX—>a x—a _x—>ayq—bq __ Lt 1 Lt x"—a"
a" x—>ax" x—>a x—a

Lt y?-b”
_x—>a y-b =——.—.ma
Lt yq—bq a

x—>a y-b —m-1

= ﬂ f'(a)=na""
qb”"

_P (pe)e !
a0
f(a)=na""

Therefore f'(x)=nx"" for all rational values of 7.
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HIGHER DERIVAT IVES

If f is a differentiable function, then its derivative f' is also a function, so f' may have a derivative of its
own, denoted by (f")" = f". This new function f"" is called the second derivative of f because it is the
derivative of the derivative of f. Using Leibnitz notation, we write the second derivative of y = f(x) as

d dy d%
dx(dx T dx?

1. If f(x) = x3 — x, find f'(x) and f"(x) and interpret f" (x).

f&x+h) - fkx) Lt f'x+h)— f'(x)
"(x) = lim "(x) =
o= R PO 0w
Lt [3(x+h)-1]-(3x"-1)
3 _ 3 — =
— lim [(x+h)°—(x+h)]—[x°—x] 50 p
h-0 h
Lt 3x 43k +6xh—-1-3x"+1
o x3+3x2h+3xh?+h3 —x—h—x3+x h—0 h
= lim 2
h—0 h Lt 3h*+6xh
 3x%h+3xh?+h3 —h h=>0 h
= jim h t
= P O3h + 6x
ﬁ
= lim(3x% + 3xh + h* — 1)
h—0
=6x
=3x?-1
We can interpret f''(x) as the slope of the curve
y = f'(x) at the point (x, f'(x)) . 2
\‘\ fu . /
In other words, it is the rate of change of the slope of \ fy f
the original curve y = f(x). \
—1.5 N 13

Notice from Figure that f"(x) is negative when
y = f'(x) has negative slope and positive when
y = f'(x) has positive slope. :
So the graphs serve as a check on our calculations.
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Standard Formulas for differentiation

constant) =0

(cot ax)' =—a.cosec’ax

1A
(sec ax) = q.Secax.tan ax

!

(cosecax) =—a.cosecax.cotax

r_ log,
(log, x) .
(ln x)' =—
X
! 1
1 _
(sm x) = o
(cos"I x)' =— lixz
(tan_1 x)’ " +1x
oy 1
(cot 1x) =~

(sinh x), =coshx

(cosh x), =sinh x

RULES OF DIFFERENTIATION

If cis a constant and f, g are differentiable function, then

Addition rules of differentiation

If f and g are differentiable, then % [f(x) £ g(x)]

= ZfO) £2-g(x)

https://doi.org/10.5281/zenodo.15288097
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1. Find the derivative of y = x8 + 12x° — 4x* + 10x® — 6x + 5
d
a(x8 + 12x° — 4x* + 10x3 — 6x + 5)

_d. g a5y _ 292 4 4.3y _g2 a4
=L+ 125 (%) — 4L (M) + 102 (1) — 62 (0) + 2 (5)
= 8x7 + 12(5x%) — 4(4x%) + 10(3x2) —6(1) +0

=8x" +60x* —16x3+30x%> -6

2. Find the points on the curve y = x* — 6x? + 4 where the tangent line is Horizontal tangents
occur where the derivative is zero.

&y _d 4y _gd2yy 4
We have dx—dx(x) 6dx(x )+dx(4)
=4x3—12x+0
= 4x(x? —3)

Thus dy/dx = 0ifx = 0 or x> — 3 = 0, that is, x = +/3.
So the given curve has horizontal tangents at x = 0, v/3, and —/3.

The corresponding points are (0,4), (v/3,=5), and (—V3,-5) .

3. The equation of motion of a particle is s = 2t3 — 5t? + 3t + 4, where s is measured in
centimeters and t in seconds. Find the acceleration as a function of time. What is the
acceleration after 2 seconds?

The velocity and acceleration are

ds
v(t) =E=6t2—10t+3

dv
a(t) = E =12t - 10

The acceleration after 2 s is a(2) = 14cm/s?.

PRODUCT RULES OF DIFFERENTIATION

If f and g are differentiable, then % [f(x).g(x)] = f(x) %g(x) + g(x) %f(x)
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1.

(@) If f(x) = xe*, find f'(x) . (b) Find the nth derivative, f™(x).

(a) By the Product Rule, we have

! —_ d X —_ d X + xd
=xe*+e*-1
= (x + 1)e*

(b) Using the Product Rule a second time, we get

f'(x) = %[(x + De*] = (x + 1);—x(ex) + ex;—x(x +1)
=x+1e*+e*-1
= (x + 2)e*
Further applications of the Product Rule give
f""(x) = (x + 3)e*
f@@) = (x +4)e*
In fact, each successive differentiation adds another term e”*, so
f™(x) = (x + n)e*..
Differentiate the function f(t) = Vt(a + bt).

Using the Product Rule, we have
d d
f'(t) = \/?E(a +bt) + (a + bt)a(\/f)

1
=\/f-b+(a+bt)-§t"1/2

a+ bt

= bVt + G

_a+3bt
= o

Using the addition Rule. f(t) = aVt + btVt
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= at'/? + pt3/?

f'(t) =% at™/2+3pt1/?

. dy . 2 2x (.2 4
Find — if y=x"¢"(x"+1) .
i y =2 (x741)

y= x'e™ (x2 + 1)4

% = 36262"4(x2 + 1)3 2x+x22e* (x2 + 1)4 +2xe™” (x2 + 1)4

% _ ezx(xz +1)3 [8)53 +2x7 (x2 +1)+2JC(JC2 +1)]

% = > (x2 + l)3 [8x3 +2x 42+ 2x° + 2x}

d_

— e (x2 + 1)3 [2)64 +10x° +2x% + 2x]

Differentiate y = x? sin x.

Using the Product Rule, we have

dy d

e Nk

d
. . _ 2
I I (sinx) + sinx—(x*)

dx

= x?cosx + 2x sinx

Differentiate y=(2x+1)’(x’ —x+1)*.

Using the Product Rule, we have

& :(2x+1)5i(x3 —x+D)*+(x° —x+l)4i(2x+l)5
dx dx dx

% = (20+1) 4(x —x+1)(32° 1)+ (¥ —x+1) '5(2x +1)(2)

% =4(2x+1) (¥ —x+1)(32 ~1)+10(x* —x+1) (2x+1)
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DIVISION RULES OF DIFFERENTIATION

If f and g are differentiable, then <

e _ I f (O]~ f ({9 ()]

dx “g(x)

1 Find (1) %(3)8 log x)

[g(x)]?

3
and 2 4~
dx\ 3x-2

d 1
(1 g (3x5 logx) = 3[x5.;+5x4 logx} =3x*[1+5logx]

X

~ 3(3x— 2)x* —3x°

_ 6x° —2x°

@ di[ : ] :
X\ 3x—-2 (B3x-2)

2  Find the derivative of f(x)=tanx.
d sinx

—tanx =—

dx dx cosx

d . . d
(cosx)—sinx—sinx——CoS X
dx dx

(cosx)’

COS X.COS X —sin x(—sin x)

(cosx)’
cos’ x +sin’ x
(cosx)’

B 1
(cosx)’

=sec’ x

-~ (3x-=2)°

3 Find the derivative of f(x)=cotx.

. d d .
(sinx)—cosx —cos x—sin x
dx dx

(sinx)

_ sinx.(—sinx) —cos x(cos x)

(sinx)?

—(cos2 X +sin? x)

(sinx)’

-1
(sinx)?

=—Co 8602 X
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x2+x-2

4 If y = W, find y’

xX%+x-2
x3+6

Then

Lety =

(x3+6)i(x2+x—2)—(x2+x—2)i(x3+6)
y' = dx dx
(x3 4+ 6)?

(P +6)(2x +1) — (x* + x — 2)(3x?)
B (x3 + 6)2

_@x*+x® +12x +6) — (3x* + 3x° — 6x?)
B (x3 + 6)2

_—x4—2x3+6x2+12x+6
B (x3 + 6)2

—x)*(b—x)’
(c—2x)

5 Find the differential coefficients of (a

_(@-x)}(b-a)

Let
7 (c—2x)’

dy (c=2x) [3(a—x)*(b—x)" =2(b—x)'(a—x) |+ 6(a—x)’(b—x)' (c - 2x)’
dx (c—2x)°

dy [-3(a=x)*(b—x)’(c=2x)=2(b—x)’(a—x)(c — 2x) |+ 6(a—x)* (b —x)’

dx (c—2x)*
dy _ (a—x)(b-x)’ {—3((1 —x)(c—2x)—-2(b—x)(c—2x)+6(a—x)(b— x)}
dx (c—2x)"

Problems on Application of Differentiation
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1 If x*+)” =25, then find Z—y and also find an
X

equation of the tangent line to the curve
x> +y* =25 at the point (3,4).

Given x*+)° =25

Differentiate w.r.t. x,

2x+2yd—y:0
dx
@v__x
dx y

& at (3,4) is m :—g
dx 4

The equation of tangent at (x,,,) is
Yy=n= m(x_xl)

Therefore the equation of tangent at (3,4) is
3
—4=—=(x-3
y=4==7(x=3)

4y-16=-3x+9
4y+3x=25

3 Find the points on the curve y =x"*—6x"+4
where the tangent line is horizontal.

If tangent is horizontal, then slope is 0.
Given y=x"—-6x"+4

Then ﬂ =4x’ —12x
dx

Q:O = 4x -12x=0
dx

ie. 4)c(x2 —3) =0
ie.x=0, x*-3=0

ie.x=0, x:i\/g

When x=0, y=4
When x=++/3, y=9—-6x3+4=-5

2 Find equations of the tangent line and

normal line to the curve y = x+/x at the point
1,1).

The derivative of f(x) = xv/x = xx¥/? = x3/2 is

3an 3z

3
T — 2 a(3/2)-1 —

So, the slope of the tangent line at (1, 1) is

fray==2

2

Therefore, an equation of the tangent line is
1

3 3
y=1l=s(x-Dory=-x—=

The normal line is perpendicular to the tangent
line, so its slope is the negative reciprocal of %, that

.2 . o
is, 2 Thus an equation of the normal line is

2 2 5
y—1——§(x—1)ory——§x+§

4  The equation of motion of a particle is
s=2t"-5t*+3t+4 where sis measured in cm
and time ¢ in seconds. Find the acceleration as
function of time. Also what is the acceleration
after 2 seconds.

Given s =21 -5t +3t+4
Velocity and acceleration
w(t) _9 6t> —10¢+3

dt

dv
a(t)=—=12t-10
() %

Acceleration a(2) =24-10=14cm / sec’
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Therefore the points where the tangents horizontal

are (0,4), (v3,-5), (3,5

X

5. Find an equation of the tangent line to the curve y= 5

at the point 1,E .
1+x 2

X

Given y=1 5
+Xx

d d
d_yz (1 +x2)a(ex) —e*(1 + x2)
dx (1 + x?)?
_ (1 +x%)e* —e*(2x)
B (14 x2)?

_e*(1-x)?
“ Ao

So the slope of the tangent line at (1,%} is m= {?} =0
X x=1

dy
_—= =1
I 0atx

This means that the tangent line at (1, gj is horizontal and its equation is y —g = O(x - 1) .

i.e _¢
L.y 5

secx
1+tanx

6. Differentiate f(x) =

tangent?

. For what values of x does the graph of f have a horizontal

The Quotient Rule gives

d d
1+ tanx)a(secx) — secx%(l + tan x)
(1+ tanx)?

flx) =

(1+ tanx) sec x tan x — sec x - sec®x
- (1 + tan x)?

sec x(tan x + tan?x — sec?x)
B (1 + tan x)?
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sec x(tan x + sec’x — 1 — sec?x)
B (1 + tan x)?

_ secx(tanx —1)
(1 + tan x)?

If tangent is horizontal, then slope is 0. Since sec x is never 0, we see that f'(x) = 0 when
tan x = 1, and this occurs when x = nm + n /4, where n is an integer.

7. At what point on the curve y = e* is the tangent line parallel to the line y = 2x?
Since y = e*, we have y' = e*.

Let the x-coordinate of the point in question be a. Then the slope of the tangent line at that point is
e®. This tangent line will be parallel to the line y = 2x if it has the same slope, that is, 2.

Equating slopes, we get

et =2
Ine® = In2
a=1n2

Therefore, the required point is (a,e®) = (In 2,2).
THE CHAIN RULE

If g is differentiable at x and f is differentiable at (x) , then the composite function F = f o g defined by
F(x) = f(g(x)) is differentiable at x and F' is given by the product

F'x)=£'(9(x))-g9'()

In Leibnitz notation, if y = f(u) and u = g(x) are both differentiable functions, then

dy dydu
dx dudx

THE POWER RULE COMBINED WITH THE CHAIN RULE
If n is any real number and u = g(x) is differentiable, then

— ") = nu™t du
dx dx
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Alternatively,

d n —
—lgCoI" =
The Chain Rule
dy dy du
If and u = then =
y=f(u) u=g(x), T dn dx

1 Findfl—y if y=+x"—4x+7
X

Let y:\/b_tandu:xz—4x+7
dy _dy du 1

dx  du dx YN

(2x—4)

nfg)]" " g'(x)

2 Find Z—y if y=logsinx
X

Let y =logu, u =sinv and v=dx

dy dy du dv 1 1
— . —.— =—.COSV.
dx  du'dvdc u 2\/;

1 1
= (2x—4) =—__-Cosv.
2Ux* —4x+7 sinv 2Jx
.cos~/x
2\/_ sm\/_
3. Differentiate y = (x3 — 1)100,
Takingu = g(x) = x> — 1andn = 100 in, we have
ay _ 5 d
1100=1 3_199_ 3_1
Y = L - 1)1 = 100 — P - )

= 100(x3 — 1)%? - 3x2 = 300x2(x3 — 1)%°

+x+1

4. Find f'(x)if f(x) = Vz;—

First rewrite f as f(x) = (x? + x + 1)7%/3

Thus

1 d
' (a2 -4/3 2
f'(x) 3(x +x+1) dx(x +x+1)

1
= —§(x2 +x+1)"32x + 1)

Differentiate y = (2x + 1)°(x3 — x + 1)*.

In this example we must use the Product Rule before using the Chain Rule:
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dy _ s 4 3 4 3 2 4 5
—=(2x+1) E(x x+D)*+(x°—x+1) a(2x+1)

dx
d
=x+1)5-4(x3—x+ 1)3a(x3 -x+1)
d
HE@ -2+ DT 5Qr+ D R+ 1)
=4Q2x+ 13 —x+1)3C@x2 -1 +5(x3—x+ D*Qx+ 1)*-2

dy

= 2(2x + D*(x3 —x + 1)3(17x3 + 6x2 — 9x + 3)
6. Differentiate y = e 5¢¢39,

The outer function is the exponential function, the middle function is the secant function and the
inner function is the tripling function. So we have

dy

— = esecwi(sec 30)
do do

= e5¢¢30 sec 30 tan 36 4 (30)
deo

= 3¢ 530 gec 36 tan 36

IMPLICIT DIFFERENTIATION

This method consists of differentiating both sides of the equation with respect to x and then solving the
resulting equation for y’. Itis always assumed that the given equation determines y implicitly as a
differentiable function of x so that the method of implicit differentiation can be applied.

Consider the implicit function F(x,y)=0. Differentiate F w.r.t x and rearrange the terms as

G(xay)?JrH(x,y) =0. Then @ = _H(x,y)
X

dc  G(x,y)
. ody
1. Find dx for xy =1 Method 2: Implicit Differentiation
Method1: Given xy =1
Differentiate w.r.t. x
Given xy =1 i.e. y:l xd—y+y=0
X dx
Differentiate w.r.t. x dy _y_ lUx_ 1
-, T T T2
Therefore & =~ L dx  x X *

2
dx X
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2. Findd—y if ax® +by* +2hxy +2gx+2fy+c=0

dx

Differentiate w.r.t. x, we have

a2x+b2y§ +2h[ Z +y}+2g+2f—+c 0

?[2by+2hx+2f]:—2ax—2hy—2g—c
X

dy —2ax-2hy-2g-c

dx 2by+2hx+2f

3 Findd—y if x’+)° =6xy.
dx

Also find the equation of tangent at (3,3).
At what point in the first quadrant is the
tangent horizontal?.

Given x’ +y° =6xy
Differentiate w.r.t. x, we have

dy dy
3x°+3)° = =6 x—=+
d dx [ dx y}

3y2d—y—6xQ:6y—3x2

Equation tangent is horizontal if j_y =0.
X

(6y -3x’ )

(3y2 —6x) -

6y—3x"=0

J’:?

From the given equation

6 2
X

dx dx Crl—ex
" 8 2
6
(3y 6x)dx (6y 3x) %:2)(3
dy _(6y-3¢) ¥ =16=4
dx (3y2—6x) e 4§ 2‘3‘
_ 8
m:[ﬂ} _(18 27)=_l ERETI
dx )y, (27-18) y="=2=2

Equation of tangent at (3,3) is

(y=3)=m(x-3)
y-3=-1(x-3)
y-3=-x+3
y=-x+6

4 5
..The tangent is horizontal at (23 ,23 j
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4 Show that the sum of x and y intercepts
of any tangent line to the curve

\/;+\/;:\/Z is equal to c.
Given \/;+\/;=\/Z

Differentiate w.r.t. x, we have
L dy
2x  24fy dx

dy_ v

dx Jx

Jx

Let (a,b) be a point on the curve. The slope

dy b

of the tangent at the pointis m=—=—-—

dx \/;
.. Equation of tangent is
(y=b)=m(x—-a)
Jb
-b)y=—F(x—a
(y—b) «/Z( )

yx/;—b\/_z—x b+ab
y\/;-i-x\/l;:a b+bx/z

5. (a) If x% +y? = 25, find

yla . xJb 1
ab+bJa  ab+bJa

Y + X =1
\/E+b a+\/E

.. the x and y intercepts are a++/ab and

b++/ab respectively. Now we have to show
that their sum is equal to ¢ .

Since (a,b) lies on the line '\/;"f-\/; = \/E, we

have \/E+\/Z:\/Z

a+ ab+b+\/ﬁ=a+b+2\/ﬁ
%0
()

c

(b) Find an equation of the tangent to the circle x? + y? = 25 at the point(3,4).

(a) Differentiate both sides of the equation x? + y? = 25:

d
a(xz +y?) =

d25
a()

d oo d 0,
dx(x) d.x(y)_

Remembering that y is a function of x and using the Chain Rule, we have

dy

2x+2ya=0

Now we solve this equation for dy/dx:

https://doi.org/10.5281/zenodo.15288097

118 | Page



dy x
dx vy
(b) At the point (3,4) we have x = 3and y = 4, so

dy 3
dx 4
An equation of the tangent to the circle at (3, 4) is therefore

y—4——%(x—3)0r3x+4y=25

Problems on higher order derivatives by formulas

1. Find y" if x* + y* = 10.

Differentiate w.r.t. x Again Differentiate w.r.t. x
dy dy
2x+4y’ ==0 S1-x3y"
Y Iy 17 " dx
y__x

dx* 2 3\
= (+")

1 y4+2x2+(y4+x2)
=2 S
1 y*+2x>+10

2 Find y" if x* + y* = 16.
Differentiating the equation implicitly with respect to x, we get
4x3 + 4y3y' =0

Solving for y' gives
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To find y"’ we differentiate this expression for y’ using the Quotient Rule and remembering that y
is a function of x:

,_d P YA - £ @)
T Rk

y? - 3x% = x3(3y2y")
= — y6

If we use the expression y’, we get

3x%y3 — 3x3y?%(— x_3)
e

y6
3(x2%y* + x9)
-
3x2(y* + xh)
-

2
=— 3xy(716) since x* + y* = 16.

xZ
y = —48}7

LOGARITHMIC DIFFERENTIATION

The calculation of derivatives of complicated functions involving products, quotients, or powers can often
be simplified by taking logarithms. The method used in the following example is called logarithmic
differentiation.

DERIVATIVES OF LOGARITHMIC FUNCTIONS

1
T In x| = " and alogx = ;logloe
1. Differentiate y = x'*, 2. Differentiate y = x*. 3 Find ¥ if y = (sinx)”
Taking loge on both sides ; - dx
g108e Taking loge on both sides Take log on both sides
Iny = Inx¥* = VxInx Iny=Inx*=xInx
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! !

1 1 1 = in x)*
Y - x-—+(lnx)—= y—=x-—+(lnx).1 log y = log(sin x)
y X y X

2% =x.logx
1 Inx , 1 Differentiate w.r.t.x
3":3’(—"‘—) y =y(—+lnx)
Vx| 2vx x ldy 1
1 ——=x.—+logx.1
:xﬁ(2+lnx) :xx(_+lnx> y dx X
2Vx x

d = y(1+logx)
dx

= (sinx)"(1+logx)

34 x2+1

4. Differentiate y = GriZy

Take logarithms of both sides of the equation and use the Laws of Logarithms to simplify:
Iny=2Inx+—In(x?+1)—5In (3x +2)

Differentiating implicitly with respect to x gives

ldy 3 1+1 2x 3
ydx 4 x 2 x2+1 3x +2
Solving for dy/dx, we get
dy 3 N X 15
xSt e e 2

Because we have an explicit expression for y, we can substitute and write

dy_x3/4\/x2+1 3+ x 15
dx  (3x+2)° “4x x2+1 3x+2)

5 Differentiate the function y =

x4
(1-2x)\x* —1

Taking loge on both sides of the given function, we get
log, v = log X
’ “A=2x)x -1
log, y =log, x* —log,(1-2x)Vx* -1, since log% =loga—logh

log, y =log, x* — [loge (1-2x) +log, Vx* —1}, since logab =loga+logh
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Differentiate w.r.t. x,
lQ:%4x3— ! (0-2)— ! . !
yde x 1-2x =1 24x -1

Maximum and Minimum Values

Let ¢ be a number in the domain of the function
f. Then f(c) is the
(i) absolute (or global) maximum value of ', if

()2 f(x), Vx

(ii) absolute (or global) minimum value of f°, if

f(e) < f(x), Vx

The maximum or minimum values of f are

called extreme values of f'.

f(d)

d

The above diagram shows the graph of f with absolute maximum at ¢ and absolute

minimum at a. Because [c, f(c)] is the highest point and [a, f(a)] is the lowest point.

Example:

= worsioacy

F

e

L)
FPeriod: :
2 '
L)
L)
L]

The function f(x)=cosx takes on its (local and y /'\
absolute) maximum value of 1 infinitely many /\ /\ O/ \ i /\f

times since cos2nz =1, Vn and —1<cosx <1, Vx. 7 B \7 B \}!

Similarly cos(2n+1)z =-1, Vnis its minimum
value.

I _"4-1:.. 3T k7T
t
[l
[l
[l
[ ]
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Example:

If f(x)=x7,then f(x)> f(0), Vx. Therefore
£(0) =0 is the absolute (and local) minimum
of f . This corresponds to the fact that origin
is the lowest point on the parabola.

However there is no highest point on the
parabola and hence the function has no
maximum value.

Example:

From the graph of the function f(x)=x’, we

observe that the function has neither absolute
maximum value nor absolute minimum value.

Also it has no local extreme values.

Definition

A function f has arelative (or local) maximum

value at ¢, if there is some number 6 >0 such that
f(¢) is the maximum value in the interval

(0—5, c+5).

A function f has arelative (or local) minimum

value at ¢, if there is some number 6 >0 such that
f(¢) is the minimum value in the interval

(0—5, c+5).

2 3 -2 -1 O
-
v

(0,0

Relative
Maximum
= o a
'.|.'.-‘.
c b !
] S
c—3& c+d
Relative
Minimum
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Definition ¥

Abs. & Rel. Max.
T

Absolute maximum (or minimum) exists atx = c

provided f(c) is the largest (or smallest) value of Rel. Max

the function than any other value of f defined in

the domain. [

o

provided f(c) is the largest (or smallest) value of
the function than any other value of f* defined in

a [\
Relative maximum (or minimum) exists atx = ¢ : /b
|
|
. |
the interval near x=c. )

Absolute extremum may be considered as relative
extremum. But converse need not be.

According to definition, relative extremum do not
occur at the end points of a domain
Example ¥

Consider the graph of f(x) in the interval [0,2]. Identify the
extremum of the function. 3t /

From the graph it is evident that the absolute maximum exists at x =2 ar / fix]
and its value is 4.

Also the relative and absolute minimum value exists at x =0 and its
value is 0. - S | s sox

Relative maximum does not exist for this function.

Theorem: Let f be defined on [a,b]. If ' haslocal maximum or minimum at ¢ in (a,b) " and if f'(x)
exists then f'(¢)=0.

Note: A critical number of a function f isanumber ¢ in the domain of f such that either f'(c)=0 or

f"(c) does not exist.

Definition: If f hasalocal maximum or minimum at ¢, then c is a critical point of /. But converse

need not be true.

Example: Consider the function f(x)=x".
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Here f'(x)=3x>. f'(x)=0 implies x* = 0. Therefore the critical pointis x=0. At this point no

extremum exist.

Example: Find the relative extreme values of
f(x)=x"=3x-2.

f'(x)=3x"-3

fl(x)=0 = 3x*-3=0, x==1

We find an interval (0,2) around 1.

Now f(0)=0-0-2=-2,
£(2)=8-6-2=0

Here f(0) < f(1) < f(2)

- f(1) is the relative minimum value of f.

F()=1-3-2=-4, and

Next we find an interval (—2,0) around —1.

Now f(-2)=-8+6-2=—-4,
and f(0)=0-0-2=-2
Here f(-2) < f(-1) < /(0)

- f(=1) is the relative maximum value of f.

f(=1)=-1+3-2=0,

%
Relative
maximum
7 1 O

Relative minimum

Example: Find the critical numbers of

fx)=x3(4-x).
Given

f(x)=x3(4—x)=4x5 —x°

3282 121 832
' =4.— S x ="~F———Xx°
f'(x) Sx Sx s ? Sx
X
Let f'(x)=0
12 1 2
2185
5 25
X

2

Multiply by x5

5
2—§xS—0
5 5
125 3
X=—.===
58 2

Example: Find the critical numbers of
f(x)=6x" +33x* —30x> +100.

Given f(x)=6x"+33x"-30x’ +100
f'(x) =30x* +132x° —90x”
Consider f'(x)=0

30x* +132x° —90x> =0
6x2(5x2 +22x—15):O
6x° (5x—3)(x—5) =0

Therefore the critical pointsare x=0, x=5, x = %
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Also f'(x) does not exist when x=0.

Therefore the critical points are x =0, %

THE CLOSED INTERVAL METHOD

To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:

[. Find the values of f at the critical numbers of f in (a, b) .

2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these

values is the absolute minimum value.

1. Let f(x)=x—x’, in
extreme values of 1.

[0,1]. Find the

f(x)=1-3x

fl(x)=0 = 1-3x*=0 ie x=*—f4

1
NG}
.. Extreme value exists at the end points 0 and 1

and critical point L
5

The values of f at these points are
1 1 1 2
0)=0, 1)=0, — |=—=——F=—F
r0-0. s0-0. ()55
The minimum value of f is 0 and it occurs at 0 and 1.

2 1
The maximum value of f* is —= and it occurs at —=.
33 NE)

3. Let f(x)=x", in
values of f.

[-2,1]. Find the extreme

f(x)=3x7

fl(x)=0 = 3x*=0 ie x=0

.. Extreme value exists at the end points -2, 1 and
the critical point 0.

The values of f atthese points are

f(2)=-8, f(M=1 f(0)=0

2. Let f(x)=x-x", in
extreme values of f'.

[2,4]. Find the

f(x)=1-3x

fl(x)=0 = 1-3x*=0 ie x=*—F4

1
NG}
But both the critical points lies out of the interval.

.. Extreme value exists at the end points 2 and 4
only.

The values of f at these points are
f(2)=2-8=—-6, f(4)=4-64=-60

The maximum value of f is —6 and it occurs at 2.

The minimum value of f is —60 and it occurs at 4.

2

4 Let f(x):xg, in
values of f.

[-1,1]. Find the extreme

2 121

,x =—X 3:__

f'(x) 3 3
X

/'(0) does not exist.

.. Extreme value exists at the end points —1, 1 and
the critical point 0.

The values of f at these points are
f=D=1 fM=1 f(0)=0
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The maximum value of f is 1 and it occurs at 1. _ _ _
The maximum value of 1 is 1 and it occurs at -1

The minimum value of f is -8 and it occurs at—2. | and 1.

The minimum value of f is 0 and it occurs at 0.

5. Find the absolute maximum and absolute minimum values of the function
3x* —4x’ —12x’ +1 on the interval [-2,3].

Here f is continuous on [-2,3].

Let f(x)=3x"—4x’ —12x" +1
f(x)=12x" —12x" —24x

Since f'(x) forall x in the interval, the only critical values are given by f'(x)=0.
12x(x* —x—12)=0
x(x—4)(x+3)=0

ie. x=0, 4, -3 are the critical values and x=0 only lies in the interval [-2,3].

The value of f at the end points are f(—2)=3(-2)" —4(-2)’ —12(-2)* +1=48+32-48+1=33

f(3)=33)"-4(3)’ —12(3)* +1=243-108—-108+1=38

The value of f at this critical pointis f(0) =3(0)* —4(0)’ —12(0)> +1=1

Comparing these three values, we see that the absolute maximum value is f(3) =38 and the

absolute minimum value is f(0)=1

6. Find the absolute maximum and minimum values of the function
f(x) =x3-3x%2+1, %st4
Since f is continuous on [%, 4 ], we can use the Closed Interval Method:
fx) =x3-3x2+1
f'(x) =3x% —6x =3x(x — 2)

Since f'(x) exists for all x, the only critical numbers of f occur when f'(x) = 0, thatis, x = 0 or

x = 2. Notice that each of these critical numbers lies in the interval (%, 4).

The values of f at these critical numbers are

fO=1 f(2)=-3

127 | Page
https://doi.org/10.5281/zenodo.15288097



The values of f at the endpoints of the interval are f(%) = % f(4) =17

Comparing these four numbers, we see that the absolute maximum value is f(4) = 17 and the
absolute minimum value is f(2) = —3.

Find the absolute maximum and minimum values of f(x)=x’-3x"+1, —% <x<4.

Given f(x) is continuous in the closed interval {—%,4}

f'(x)=3x" —6x. Since f'(x) exists for all x, the only critical values are given by f'(x)=0.

f'(x)=0 = 3x*-6x=0
3x(x-2)=0

2. x=0, 2 are the critical points.
Now let us find the value of f at the critical and end points.

2 8 4 8 4 8

f(0)=0-3(0)+1=1
f(2)=8-3%x4+1=8-12+1=-3
f(4)=64-3x16+1=17
From the above, the absolute maximum exists at x =4 and its maximum value is 17 and

the absolute minimum exists at x =2 and its minimum value is 3.
Find the absolute maximum and minimum values of f(x)=x—-2sinx, 0<x<27x.

Given f(x) is continuous in the closed interval [0,27].

f'(x)=1-2cosx. Since f'(x) exists for all x, the only critical values are given by f'(x)=0.
f'(x)=0 = 1-2cosx=0

_ 1
ie. COSX=—
2

T Sw . .
X= 33 are the critical points.

Now let us find the value of f at the critical and end points.
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£(0)=0-2sin0=0
fQRr)y=2r-2sinr=27r=6.2

f(£j=£_2sin£=£—2£=—0.68
3 3 3 3 2

3

f(SEJ Sx St Srx \/§

=—-2sin—=—+2—=6.96
3 3 3 2
From the above, the absolute maximum exists at x = 5?7[ and its maximum value is 6.96 and

the absolute minimum exists at x = E and its minimum value is —0.68.

Rolle’s Theorem
\la,ﬂan [b,ﬂbn/

If a function f(x) is continuous in [a,b],

differentiable in (a,b) and f(a) = f(b)

then there exists at least one real a c b

number ce(a,b) such that f'(c)=0.

f'(e)=0

1. Prove that the equation x’ + x—1=0 has exactly one real root in [0,1]

First we use Intermediate Value Theorem, to prove a root exists in the interval.

Let f(x)=x"+x—1.

Here f(0)=0+0-1=-1<0 and f()=1+1-1=1>0

Since f'(x) is polynomial, it is continuous. Hence by Intermediate Value theorem, there exists a
number ¢ between 0 and 1 such that f(c) =0. Therefore the given equation has a root.

To show that the equation has no other real root in the interval, we use Rolle’s theorem.

Suppose there exists two roots a and b. Then f(a)=0= f(b).

Since f(x) is polynomial, it is differentiable in (a,b) and continuous in [a,b].

Then by Rolle’s theorem, there exists a number ¢ between a and b such that f'(c)=0.
But f’(x)=3x"+1>0 for all x. i.e. f'(x) can never be 0. This is a contradiction to the theorem.

Therefore the equation cannot have two roots.

129 | Page
https://doi.org/10.5281/zenodo.15288097



2
2. Let f(x)=1-x3. Show that f(-1)= /(1) but there is no number c in (-1,1) such that
f'(c)=0. Why does this is not contradicts Rolle’s theorem.

2
Given f(x)=1-x3
2 2

f)=1-13=0 and f(-1)=1-(-1)>=1-1=0

2 121 , .
gx 3 :—5—1. But f'(c)#0 for any c in (-1,1) .

x3

Now f'(x)=-

But this is not contradiction to the Rolle’s theorem, because f'(0) does not exist and hence f is

not differentiable in (—1,1).

3. Verify Rolle’s theorem for f(x)=3x4-4x2+5 in [-1,1].

Given f(x) = 3x%* - 4x2 + 5.
Clearly f(x) continuous in (-1,1)and derivable in [-1,1]
Also f(-1) = f(1) = 4. Therefore conditions of Rolle’s theorem holds good.
f'(c) = 0 gives 12c¢3 -8c=0.

4c (3c2-2)=0

ie. c=0,c2=2/3, c=%V(2/3)

Here -1 <0 <1, -1<V(2/3) <1, -1<-V(2/3) <1

The Mean Value Theorem

If a function f(x) is continuous in [a,b], ¥
TangentLd.new//"’-

differentiable in (a,b) and f(a) # f(b) /-_-" _________‘,f(x)
then there exists at least one real number ,’ B
ce(a,b) such that W = f’(c)- ;\«:anr

Ve i Line

A¥ :
a ;: & *
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1.

Find c of mean value theorem for x*+x in[1,2].
Given f(x) = x3+ x. Clearly f(x) continuous in [1,2] and derivable in (1,2).
f’(x) = 3x2 + 1. Therefore conditions of mean value theorem holds good.

Also f(1) = 2 and f(2) =10

f’(c):%ﬁ(a)i.e.f’(c):f(zz):lf(l):101_2:8i.e. 3¢*+1=8

f'(c)=0 gives 3¢* =7

Solving, we get c=i\/§. But c=i\/§ e [1,2].

Let f(x) is continuous and differentiable in [0,2]. Also f/(0)=-3 and f'(x)<5, Vx. Whatis
the largest possible value for f(2)?

Given that f is differentiable everywhere. We apply Mean Value theorem in the interval [0,2].

f2)-100)_ .
AR

There exists a number ¢ such that

f(2)=71(0)=27"(c)
f(2)+3=21"(c)
f(2)=-3+2f"(c)
f(2)<-3+10, But f'(c)<5, ie. 2f(¢)<10
f(2)<7

.. the largest possible value of f(2) is 7.

Let f(x) is continuous and differentiable in [6,15]. Also f(6)=-2 and f'(x)<10 forall x.
What is the largest possible value for f(15)?

Given that f is differentiable everywhere. We apply Mean Value theorem in the interval [6,15].

f(15)-/(6)
15-6

There exists a number ¢ such that

- /'(e)
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S(15)=7(6)=9/"(c)

f(15)+2=91"(c)

£(15)==2+9f"(c)

£(15)<-2+90, But f'(c)<10, ie. 9f'(c)<90
f(15)<88

.. the largest possible value of f(15) is 88.
Increasing Decreasing Functions

A function f(x) is called increasing in an interval 7 if f(x,) < f(x,) whenever x, <x, in /.

A function f(x) is called decreasing in an interval 7 if f(x,) > f(x,) whenever x, <x, in /.

Note:
1 Derivative of an increasing function is positive and the derivative of a decreasing function is
negative.
2 Graphically, a function is increasing on an interval if its slopes upward to the right and decreasing
on an interval if its slopes downward to the right.
3 If the derivative is 0, then the function is neither increasing nor decreasing.

F(xs)
S (=)

Xy X X Xy
Here the function is decreasing in the interval (x,, x,) and increasing in the interval (x,, x;) and again

decreasing in the interval (x,, x, ).

Increasing / Decreasing Test

Let f be continuous in an interval I and differentiable
at interior points of I. Then

() If f'(x)>0 oninterior points of an interval, then f
is increasing on that interval. f is strictly increasing if
f'(x) =0 for at most finite number of points in L.

(i) If f'(x) <0 on interior points of an interval, then
f is decreasing on that interval. f is strictly
decreasing if f’(x) =0 for at most finite number of
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points in L.

f)=x

fis strictly f is strictly
decreasing in nereasing in
(=,0] (=)

Example: On which interval is

3 2 _ . . .
f(x)=2x"—6x" +6x—7 strictly increasing or Example: Consider f(x)= 1 . Even though
decreasing? X

1
! x - < 0
Let f'(x)=6x"—12x+6=6(x—1)* f'(%) =
Here f'(x)>0 for all x except at x=1 it is not strictly decreasing function in its domain.
Wh I, f'(x)=0 From the figure, It is strictly decreasing in each of
en x=1, x)=0.

the intervals (—,0) and (0,%).
Hence by definition, f(x) is strictly increasing in

(—o0,0).

THE FIRST DERIVATIVE TEST

Suppose that c is a critical number of a continuous function f defined in an interval I.

(a) If f' changes from positive to negative at ¢, then f has a local(relative) maximum at c.
(b) If f' changes from negative to positive at ¢, then f has a local(relative) minimum at c.

(c) If f" does not change sign at ¢ (for example, if f' is positive on both sides of ¢ or negative on both
sides), then f has no local maximum or minimum at c.
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¥ ¥
flc] fis increasing
f f decreasing
increasi fx] fis decreasing
flc)
[} I 1
x B
C [ i X
fle) is maximum value of fon I c
f(c) is minimum value of fon I
Solved Problems
1. Apply first derivative test to find the local maximum and local minimum of values of the

function f(x)=(x—1)*(x—3).
Given f(x) is continuous in the interval (—oo,c0)
F1x) =2(x=1)(x=3)° +2(x—1)*(x—3)
=2(x—)(x=3)[(x=3) +(x-1)]
=2(x—D)(x—2)(x—3)
Since f'(x) exists for all x, the only critical values are given by f(x)=0 .
(x=1)(x=2)(x=3)=0

Therefore x =1, 2, 3 are the critical points.

Interval f'(x)=2(x—-1)(x-2)(x—-3) f(x)
—o<x<1 _ Decreasing on (—oo,1)
l<x<2 + Increasing on (1,2)
2<x<3 _ Decreasing on (2,3)
3<x<o + Increasing on (3,%)
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Since f’(x) changes from negative to positive at 1, the first derivative test gives that there is a

local minimum at 1 and the local minimum value is f(l) =0.

Since f'(x) changes from positive to negative at 2, the first derivative test gives that there is a

local maximum at 2 and the local maximum value is f(2) =1.

Since f'(x) changes from negative to positive at 3, the first derivative test gives that there is a

local minimum at 3 and the local minimum value is f(3)=0.

2. Find the local maximum and local minimum of values of the function
f(x)=x+2sinx, 0<x<27.

Given f(x) is continuous in the closed interval [0,27].

f'(x)=1+2cosx. Since f'(x) exists for all x, the only critical values are given by f'(x)=0.

f'(x)=0 = 1+2cosx=0

) 1
ie. cosx=-——
2

2 4Ar .. .
.. X =—,— are the critical points.

33

Interval f'(x)=1+2cosx f(x)
2

O<x< sz + Increasing on (0,2?”
2 x< 4 D } 2w 4r
— — _ r —_—
3 3 ecreasing on 373
4
?ﬂ <x<2m + Increasing on [47”, 271']

. , . . 2 , L . .
Since f’(x) changes from positive to negative at 3 the first derivative test gives that there is a

local maximum at 2?” and the local maximum value is f(z?ﬁj = 2?” + 2sin2?ﬂ = 2?” + 2£ .

2

) , ) . 4r ) o ) )
Since f’(x) changes from negative to positive at X the first derivative test gives that there is a

local minimum at 4% and the local minimum value is f(%[j = 4?7[ + 2sin4?ﬁ = 4z _ 2% .
Special Case
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It can be conclude from the first derivative test that
extreme value exists at a critical point ¢ even if
/f'(c) does not exist.

2
Let f(x)=x?, which is continuous in (—o0,).

1

Then f'(x):zx 3 :2% for x#0
3 3 3
X
Here f'(0) does not exist.

Also f'(x)<0 for x<0 and f'(x)>0 for x>0

Thus f'(x) changes from negative to positive at 0.
.. By first derivative test, f(0) =0 is the relative
minimum of f even though f'(0) does not exist.

CONCAVITY AND INFLECTION POINTS

If the graph of f lies above all of its tangents on an
interval I, then it is called concave upward on .

If f"(x) > 0 for all x in I, then the graph of f is
concave upward on .

If the graph of f lies below all of its tangents on I, it
is called concave downward on I.

If f'"(x) < 0 forall x in I, then the graph of f is
concave downward on I.

https://doi.org/10.5281/zenodo.15288097
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X
x
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If two parts of the curve lie on different sides of the
tangent at a point, the point is said to be point of
inflection where f"(x)=0 and f"(x)=0.

The following figure shows the graph of a function that is concave upward (abbreviated CU) on the
intervals (b,c), (d,e), and (e, p) and concave downward (CD) on the intervals (a, b), (c,d),and (p, q) .

VA

=Y

0

DEFINITION

A point P on a curve y = f(x) is called an inflection point if f is continuous there and the curve changes
from concave upward to concave downward or from concave downward to concave upward at P.

In the above figure the points B, C, D and P are points of inflection.
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Inflection point

EEE

Solved Problems

1 Let f(x)=x"—6x"+8x+10. Find the points of inflection of .

The first and second derivatives are
fl(x)=4x —-12x+8 and  f"(x)=12x>—12=12(x—1)(x +1)

f"(x)=0 = (x-D(x+1)=0 ie. x=-1,1

Let us find the sign of f"(x) in the interval (—o0,—-1), (—1,1) and (1,0)

SO =12x-Dx+D) + +++++++++++++0-ccmccccmannn D++++++++++++++

Here f"(1)= f"(-1)=0. Also f"(x) changes sign at both 1 and —1.
Therefore f(1)=13, and f(-1)=-3.
Hence (1,13) and (—1,-3) are the inflection points of 1 .
2 Sketch a possible graph of a function f that satisfies the following conditions:
@) f'(x)>00n(—x,1), f(x) <0on (1,0)
(>ii) " (x) > 0on(—oo, —2)and(2,»), f''(x) < 0on(-2,2)
(iii) Jim f (x) = ~2,lim f (x) = 0
Condition(i) tells us that f is increasing on (—o0, 1) and decreasing on (1, o).
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Condition (ii) says that f is concave upward on (—oo, —2) and (2, «) , and concave downward on (—2,2) .
From condition (iii) we know that the graph of f has two horizontal asymptotes: y = =2 and y = 0.

We first draw the horizontal asymptote y = —2 as a
dashed line. We then draw the graph of f

approaching this asymptote at the far left,
k increasing to its maximum pointat x = 1 and

decreasing toward the x-axis at the far right.

yA

We also make sure that the graph has inflection

___________________ points when x = —2 and 2. Notice that we made the
y=-2 curve bend upward for x < —2 and x > 2, and bend

downward when x is between —2 and 2.

3 Sketch the graph of f(x)= ix +i .
x—

First we find the derivatives of f:

(3x-1)@)-(2x+1)B3) _ -5
(3x-1)’ (3x-1)’

f'(x)=

30
(3x—1)

f(x) =

3

Here f'(x)#0 forall x. But f'(x) does not exist for x = % .. the only critical pointis x = %

Interval sign of f'(x) f(x) sign of f"'(x) Concavity
Negative Decreasing Negative Concave
—0< X< —
3 downward
1 Negative Decreasing Positive concave
—<x<o
3 upward
Lt Lt . Lt Lt "
Also 1 f()= |~ = and PAC) IR R
x> — x—>— 3x-1 X — x—>— 3x-1
3 3 3 3
Therefore x = % is the vertical asymptote.
x(2 + 1)
Lt Lt Lt Lt
Also fx) = 2xtl_ Y2 gimilarly =2
X — o x> 3x-1 x—>wo . 3_1 3 —00 3
X
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Therefore y :g is a horizontal asymptote. From these information, we can draw the graph of 1.

¥

The Second Derivative Test

Suppose f” is continuous near c.

(i) If f'(¢c)=0and f"(c¢)>0 ,then f hasalocal minimumat c .

(i) If f'(¢)=0and f"(c)<0 ,then f hasalocal maximum at c .

Note: If f”(c)=0, we cannot derive any conclusions about relative extremum of f at c .

1. Find the intervals of concavity and the points of inflection for the curve y=2x" +3x* —36x.
Given f(x)=2x"+3x*-36x. Then f'(x)=6x"+6x-36 and f"(x)=12x+6
The critical points are given by f'(x)=0

6x° +6x—36=0
X +x-6=0
(x—-2)(x+3)=0

SLox=2,x=-3

f"(x)=0 gives 12x+6=0, ie. x= —%. Hence we divide the real line into two intervals with this

numbers as end points.

Interval f"(x)=12x+6 Concavity
( 1 — Downward
_w’ ——
2
( 1 j + Upward
— E , w
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. 1. : : : :
The point x=—§ is an inflection point since the curve changes from concave downward to

concave upward.

2 Discuss the curve y=x"—4x’ with respect to concavity, points of inflection, local maxima
and minima.

Given f(x)=x'—4x’. Then f'(x)=4x"—-12x" and f"(x)=12x"—24x

The critical points are given by f'(x)=0

4 —12x* =0
4x*(x-3)=0
Sox=0,x=3

We calculate f” at these critical points

f(x)=12x" —24x
£"(0)=12(0)—24(0)=0
7"(3)=12(9)-24(3)=36>0

Since f'(3)=0 and f"(3)>0, by second derivative test, f haslocal minimum at x =3 and the

minimum value is f(3)=3"-4x3’=-27
Second derivative test gives no information about the critical point x =0, since f"(0)=0

But since f'(x)<0 for x<0 and 0<x <3, first derivative test tells us that /" does not have a

local maximum or minimum at x=0.

f"(x)=0 gives 12x> —24x=0, ie. 12x(x—2)=0 gives x=0, 2. Hence we divide the real line into

intervals with these numbers as end points.

Interval f(x)=12x" —24x Concavity
(—0,0) + Upward
(0,2) - Downward
(2,0) + Upward

The point x=0 is an inflection point since the curve changes from concave upward to concave
downward.
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The point x=2 is an inflection point since the curve changes from concave downward to concave
upward.

3 Find where the function f(x)=23x"—4x’ —12x” +5 is increasing or decreasing. Find the
local maximum and local minimum values of 1.
(i) Given f(x)=3x"—4x’-12x*+5 and
fi(x)=12x" —12x" = 24x = 12x(x* = x = 2) =12x(x = 2) (x+1)

Interval (%) (x=2) (x+1) f'(x) f(x)
x<—1 - - - - Decreasing on (—o,—1)
—-1<x<0 - — + + Increasing on (-1,0)
O0<x<2 + — + - Decreasing on (0,2)
x>2 + + + + Increasing on (2,0)

(ii) f changes from decreasing to increasing at x =—1 and hence f haslocal minimum at x =—1and the

minimum value is f(~1) =3(-1)* —4(-1)’ =12(=1)’ +5=3+4-12+5=0

f changes from increasing to decreasing at x=0 and hence f haslocal maximum at x=0and the
maximum value is £(0) =3(0)* —4(0)’ =12(0)* +5=5

f changes from decreasing to increasing at x=2 and hence f haslocal minimum at x=2and the

minimum value is f(2) =3(2)* —4(2)’ —12(2)* +5=48-32-48+5=-27

4, For the function f(x)=2x’+3x’ —36x, (i) Find the intervals on which it is increasing or
decreasing (ii) Find the local maximum and minimum values of /. (iii) Find the intervals

of concavity and the inflection points

(i) Given f(x)=2x"+3x"-36x and f’(x)=6x"+6x—36=6(x+3)(x—2)

Interval (x+3) (x=2) f'(x) f(x)
x<-3 — - + Increasing on (—o0,-3)
—3<x<2 + — — Decreasing on (-3,2)
x>2 + + + Increasing on (2,0)

(i) f changes from increasing to decreasing at x=-3 and hence f haslocal maximum at x=-3
and the maximum value is f(-3)=-2x27+3x9+36x3 =381
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f changes from decreasing to increasing at x=2 and hence f haslocal minimum at x=2and
the minimum value is f(2) =2x8+3x4—-36x2=—-44

(iii) f"(x)=12x+6=6(2x+1) f"(x)=0 gives 2x+1)=0, ie. x=——

5 Hence we divide the real
line into intervals with these numbers as end points.

Interval f"(x)=2x+1 Concavity
( 1) — Downward
_w’__
2
( 1 j + Upward
__’w
2
The point x=-— is an inflection point since the curve changes from concave downward to
concave upward.

5.

First Derivative Test

Find the local maximum and minimum values of f(x)= x=4x using both the first and
second derivative tests.

) =x—4x =

Second Derivative Test

4x*

Let f'(x)=0, then

1

2x4 -1
=0
4x*
1
2x*-1=0
1
x4 =

—_ N | —

X= 16 is the critical point

Also f'(x) does not exist at x =0, which is also a

critical point.

Let f'(x)=0, then

1

2x4 -1
=0
4x4
1
2x4—1=0
1
xZ:

—_ N | —

3 1
f!l(x)z_%l 2+§lx 4

X
2 44
111 311
TR
2 x4
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31

1

(1 11 1
_— | == +
! (16] :

22(1
16

J

S
16

;

4

Interval , 11 11 f(x)
S'(x)= ST a7
x? x4
—0<x<0 does not exist
1 :
O<x<— - Decreasing
16
x>— + Increasing
16

Since f’(x) changes from negative to positive at

1
E , the first derivative test gives that there is a

1
local minimum at E and the local minimum value

IENSEVEES,

I 1

is

2

“ 1
6 For the function f(x)=x3(6-x)3

—Leai3i08-850
4716

1 1
Since f'| — |=0 and " — |>0,Db
/ (mj / (16) g
second derivative test, f haslocal minimum

1
at x = E and the minimum value is

(i) Find the intervals on which it is increasing or decreasing

(ii) Find the local maxima and minima of f

(iii) Find the intervals of concavity and the inflection points

2 1

Given f(x)=x3(6-x)3

Therefore

1 2

f'(x)= %x_;(6—x)3 —%x3 (6—x)_§

https://doi.org/10.5281/zenodo.15288097
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Here f'(x)=0 when x=4.

Also f'(x) does notexistat x=0 & 6. Therefore the critical points are 0, 4, 6.

Interval 4—x x% (6—x)§ Sf'(x) S(x)
—0<x<0 + - + - decreasing on (—OO, 0)
0<x<4 + + + + increasing on (0,4)
4<x<6 - + + - decreasing on (4, 6)
6<x <00 - + + - decreasing on (6,%0)

Since f’(x) changes from negative to positive at 0, the first derivative test gives that there is a local
2
minimum at 0 and the local minimum value is f(0) =0°(6—0)

@ | —

=0
Since f’(x) changes from positive to negative at 4, the first derivative test gives that there is a local
2 1

5
maximum at 4 and the local maximum value is f(4)=4°(6-4)3 =23

Since f'(x) does not change sign at x =6, there is no maximum or minimum at this point.

N

5 1

S =—x (6-x) 3 —%x_3(6—x)_§[4—x]+§(6—x)_3 O [4-x]

5

(6—x)_5 [—x(6—x)—%(6—x)(4—x)+§x(4—x)}

[SSRINN

=X

4 5 2 2
=x3(6-x)3 —6x+x2—8+10—X—x—+8—x—2i
3 3 3 3

8
= — i S
x3(6-x)3
f"(x) =—4L5. From the expression we see that f"(x) changes sign near 0 and 6.. Hence we
x§(6—x)5

divide the real line into intervals with these numbers as end points.

Interval f"(x) Concavity

(—0,0) - Downward
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(0, 6) - Downward

(6,0) + Upward
The point x=6 is an inflection point since the curve changes from concave downward to concave
upward.
7 Find the maximum and minimum values of 2x’ —3x* -36x+10

Let f(x)=2x"—3x"-36x+10
f'(x)=6x"—6x-36 and f'(x)=12x-6

f'(x)=0 gives 6x*—6x-36=0
ie. x’—x—6=0
(x+2)(x-3)=0
x=-2,3
At x=-2, f"(x)=12(-2)—6=-30, negative. At x=3, f"(x)=12(3)—-6=30, positive.

Hence f has maximum and the maximum value is | Hence f has minimum and the minimum value is

£(=2) = 2(~8) = 3(4) = 36(~2) + 10 £(3)=2(27)=3(9)-36(3) +10
=-16-12+72+10=54 =54-27-108+10=-71
8. Estimate the maxima and minima of the function 10x® —24x° +15x* —40x> +108

Let f(x)=10x®—24x° +15x* —40x* +108.
£'(x)=60x" —120x* +60x* —120x> and f"(x)=300x"* —480x> +180x> —240x
f'(x)=0 gives 60x° —120x* +60x> —120x*> =0
60x>(x* —2x% +x—2)=0
x=0,0 and (x3 —2x* +x—2)= 0 hence x=2
At x=0, f"(0)=0 and hence x=0 is a point of inflection
At x=2, f"(2)=4800-3840+720—480 = positive. Therefore f(x) has minimum at x=2,

The minimum value is £(2)= 640 —768+240—320+108 = —100.

146 | Page
https://doi.org/10.5281/zenodo.15288097



10.

Estimate the local extrema of x* —8x” using second derivative test.
Let f(x)=x*-8x’

f(x)=4x"—16x and f(x)=12x*-16

f'(x)= 0 gives 4)c(x2 —16): 0

x=0,4,-4

At x=0, f ”(0) =—16, negative and hence f(x) has maximum and the maximum value
is f(0)=0.

At x=4, f"(4)=196-16 = positive. Therefore f(x) has minimum at x=4 and the
minimum value is f(4)=4*-8(4)’ =128.
At x=-4, f”(— 4) =192 —16 = positive. Therefore f(x) has minimum at x=—4 and the

minimum value is f(-4)=(-4)' —8(-4)’ =128.

Divide 20 into two parts so that the product of the square of the one and cube of
the other may be the greatest possible.

Let the two parts be x & y so that x+ y=20........ (i)
Let z="x’

z=(20-x)’x’ {using (i)}

z=(400—40x+x*)x’ =400x" —40x* +x°
dz

— =1200x* -160x’ + 5x*

dx

dZ 2 3 4
d—:0 = 1200x° —160x" +5x" =0
X

5f(240—32x+x2):0
5x% (x—20)(x—12)=0

. x=0,12, 20 are the stationary points. But x cannot be 0 or 20.
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11.

12.

Let x=12

2
9%z _ 5400x—480x* + 204°
dx
dZZ 2 3
At x=12, == =2400(12)-480(12)° +20(12)’ <0

. at x=12, z=y’x’ is maximum.

Therefore the two parts into which 20 can be divided are 12 and 8.

Find the maximum value and minimum value of the function

Given y= (x—2)2(x—3).

@=Ogivesx:2 and ng

dy _

= (x—2)3x—8).and

12 -14 = -2, negative

2

y=(x-2)(x-3)

Y _6v_14

B =
X

Therefore, when x = 2, y has maximum and the maximum value is y = 0.

dx
2
When x =2, dg/:
dx
2
Whenx:§, a’g/:
3 dx

6 x 3 14 = 2, positive

8 . . .
Therefore, when x = 5' y has minimum and the minimum value is

5

Find the relative(local) extrema for the function f(x)=x’+x> -8x—1

Given f(x)=x’+x>—8x—1 and f'(x)=3x> +2x-8=(3x—4)x+2)

f’(x):o gives x=-2 and x:%

Critical Point Interval Value of f'(x)
x:i —2<x<ﬂ f'(x)<0
3 3
Part I '
4 f'(x)>0
x=— x>—
3
x=-2 x<-2 f'(x)>0
Part II
x=-2 ocx<d :
3 ['x)<0

https://doi.org/10.5281/zenodo.15288097
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In part I, sign changes between negative to positive, by first derivative, a local

L . 4 . . 4 203
minimum exist at x:E and the minimum value is f 3 =—2—7

In part I, sign changes between positive to negative, by first derivative, a local
maximum exist at x=-2 and the maximum value is f(-2)=11

y = X x°-8x-1

12

10 /"\

IVERN /

{ \ /
/
/

, \ /
. \ /
) N\, /
N
-3 -2 -1 0 1 2 3
X

If f(x)=2x"+3x"-36x, find the intervals on which it is increasing or decreasing,

the local maximum and local minimum values of f(x).

Given f(x)=2x"+3x’-36x and f'(x)=6x+6x—-36

F(x)=0=x"+x-6=0 =(x-2)(x+3)=0 =>x=2,-3

Critical Point Interval Value of f'(x)
x=2 3<x<2 f'(x)<o0
Part I
x=2 x>2 f'(x)>0
x=-3 x<-3 f'(x)>0
Part II
x=-3 3<x<2 f'(x)<0

In part [, sign changes between negative to positive, by first derivative, a local
minimum exist at x=2 and the minimum value is f(2)=16+12—72=—44
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In part I, sign changes between positive to negative, by first derivative, a local
maximum exist at x=-3 and the maximum value is f(-3)=-54+27+108=81

-~

1800

y = 2 +3x°-36x

1600

1400

1200

1000

800

600

400

200

-200
-15

-10 -5

o
(6]
—_
o
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UNIT III - FUNCTIONS OF SEVERAL VARIABLES

Introduction

A function of several variables consists of two parts; a domain, which is a collection of points in
the plane or in space, and a rule, which assigns to each member of the domain one and only one
number. If the domain is a set of points in the plane, it is called function of two variables. If the
domain is a set of points in the sphere, it is called function of three variables.

The following are some functions of several variables along with its geometric interpretations:

1. f(x,y)=xy, for x>0 and y=>0. - Area of a rectangle
2. f(x,y,z)=xyz, for x>0, y>0 and z>0. - Volume of a rectangular parallelepiped

fooy) =y -

A computer drawn graph of
N *
f(x,y) =" —x"is given here. \\\S\QQ\\Q\\

N\
M
K

Partial Derivatives

Let f be a function of two variables. If we fix one of the two variables, say y=y,, the function
whose values are f (x, yo) is a function of x alone. If f has a derivative at x,, we call the

derivative a partial derivative at (x,, y, )

Let f be a function of two variables and let (xo,yo) be in the domain of f. The partial
derivatives of  f  with respect to x at (x,y,) is defined by

L °+h’ o) 0>Yo
fx(me’o):h_)Of(x y}z f(x y)

derivatives of  f  with respect to » at (x,),) is defined by

L h)—
fy(xmyo):h_iof(xo’yo+ 2 f(xo,yo)

Also we can extend this concept to a functions of three variables also.

provided that this limit exists. Similarly, the partial

provided that this limit exists.
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The partial derivatives are denoted by f, = gl and f, = 2
X

oy
Example: Let f(x,y)=2xy>-3x’y. Find f, and f, and evaluate f, and f, at (1,-1).

Keeping y as constant and differentiating f with respect to x, we find that f.(x,y) =2y’ —6xy
Therefore f (1,-1)=2+6=28

Keeping x as constant and differentiating f* with respectto y, we find that f (x,y)= dxy —3x°
Therefore f,(1,-1)=-4-3=-7

The sum, product and quotient rules for derivatives are applicable for partial derivatives also.
Thus f and g have partial derivatives, then

(f+g)x=fx+gx and (f+g) =f,+g,
(f-g).=f.-g and (f-g) =f—¢g,
(f.g)x =f.g+fg and (
8. g

X

Geometrical Meaning

Suppose f(x,y) is the temperature at any point (x,y) on a flat metal plate lying on the xy
plane. Then f,(x,,,) is the rate at which the temperature changes at (x,,y,) along the line
through (x,,y,) parallel to the x axis (i.e. y is fixed). If the temperature increases as x
increases, then fx(xo,yo)>0, whereas if the temperature decreases as xincreases, then

£:(x%0,%,) <0. Similarly we can explain £, (x,,,)-

Thus fx(xo, yo) represents the slope of the tangent to the surface f(x,y), parallel to the line
Y=Yy, at (xy, 9, f(%,,¥,)). An analogous statement is true for £, (x,,y,) also.

Higher Order Partial Derivatives

For functions of three variables, partial derivatives at (x,, y,,z, ) are defined as follows:

Lt f(x,+h,vy,z,)— f(Xy, V2
fx(XO’ymZO):h_)O (o 0 0}2 (o 0 0)_

Similarly f, (x,,¥5,2,) and £, (X,,,,2,) can be defined.

A function of two variables may have second, third and higher derivatives. The higher order
derivatives are denoted as follows:

of af _of _of of of
oxdy’ b _ﬁya f”"‘_ax“f oy’ S = ooy’ S = oxox’
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Note: If f, & f, are continuous at (x,,,), then £, (x5, )= £, (%5, 1)
Solved Problems on Partial Differentiation

1. Ifu:X+£+£,thenfindthevalue of xa—u+ya—u+za—u.
z Xy ox oy Oz
. y z X . . . :
Given u ==+—+—. Differentiate partially w.r.t x,y, z respectively
z x y

ou z 1 Ou x 1 ou vy 1

STt Tt Tt

ox x° y Oy y. oz 0z z7 X

xﬁ_my@_uﬂa_u:_x_j XY @ E_ 2 X X0V Z g,

ox oy 0z x y y oz z X X y Yy z z X

2. Finda—u and o if u=y"
ox oy

Given u = y*
Taking log on both sides

logu =log y*
logu = xlog y

logu xlo
2 =e gy

e

x1
u=e"*’

Partially differentiating with respectto x & y.

Ou xlogy ou logy| X
A e (o U _ grow| X
o (log ¥) Jnd £y e y

4. If u=(x—-y)(y—-z)(z—x), prove thata—u+a—u
ox Oy

Given u=(x—-y)(y—z)(z—x)....)
Differentiate (1) partially w.r.t x,

ou

ox
Differentiate (1) partially w.r.t y,

0

3. Finda—u and & if u=x"

Oox

Given u = x”
Taking log on both sides

logu =log x”
logu = ylogx

logu logx
2 :ey 2

e

u= eylogx

Partially differentiating with respectto x & y.

ou

Ox

=" F} and % =" logx
X

LMy,
oz

=(=)[(x=NED+DE -0 ]=~(x =)y —2)+(y—2)(z - x)

%l =(z=)[(x=)D+ Dy —2)]=(x=y)Nz=x)—(y—2)(z - x)

Differentiate (1) partially w.r.t z,

Z_Z = (x= P [E—)D + Dy —2)] = ~(x =)z =)+ (y—2)(x— )
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Adding, we get 8_u+6‘_u +6_u =0
ox Oy Oz

If u =10g(tanx+tany+tanz), prove that sin 2xa—u+sin 2ya—u+sin 226_14 =2
Ox oy oz

Given u = log(tan x + tan y + tan z)

ou sec’ x <in 2 Ou _ 2sin xcosxsec’ x B 2tan x

Ox tanx+tany+tanz Ox tanx+tany+tanz tanx+tany+tanz
ou sec” y G 2 Ou _ 2sinycosysec’y 2tan y

Oy tanx+tan y+tanz yay tanx+tan y+tanz tanx+tan y+tanz
ou sec’ z <2 Ou  2sin zcoszsec’ z 2tanz
_—= Z—: =

0z tanx+tany+tanz Oz tanx+tany+tanz tanx+tany+tanz

: ou . ou . Ou 2tanx+2tan y+2tanz
sin 2x—+sin 2y—+sn 2z— = =2
Ox oy oz tan x + tan y +tan z

0*u 0*u 0’u

oyoz ° oxoz - oxoy

If u= log(x2 +y? +zz), prove that x

Given u = log(x2 +y? +zz)

Ou _ 2x Ou _ 2y
Ox _log(x2+y2+zz) oy _log(x2+y2+zz)
~2x 2y 2y 2z
o’u _ ‘x2+y2+zzi o’u _ ix2+y2+zzi
Ox0y [log(x2 +y7 22)]2 0zQy [log(x2 +y7 4+ 22)]2
. 0’u _ —4xyz . o’u _ —4xyz
Ox0y [log(x2 +y? 477 )]2 (x2 +y? +22) 0z0y [log(x2 +y° +22)]2 (x2 +y° +22)
o’u —4xyz

Similarly, we can prove y == = log(x? + 2 + 22 (x> + * + )

2 2
If u=x"+y’—3axy, prove that Ou _ Ou
oyox  OxOy
Given u = x> +y° —3axy
8_u:3x2_3ay a—u=3yz—3ax
Ox oy
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2 2
a U :_3a a u :—3a
Ox0y 0yox
2 2
8. If u=e"sinby, prove that Ou = Ou
oyox  Ox0Oy
Given u =e“ sin by
o = qe” sin by ou = be™ cosby
ox dy
2 2
Ou = abe™ cosby O = abe™ cosby
Ovox Oxoy
2 2
9. If u=tan™' Z, prove that G_th = 8_1;1
X ox~ Oy
_y 1
B 22 A, 2~ 2 2
Ox TR oy 14_);72 x*+y
X X
o’u . —2xy ou . —2xy
e ¥ )
10. If u=1l (xz + 2) prove that @ = @
. ¢ vl x> oy’
ou 2x ou 2y

R logix2 +y? )

5= 1ogix2 +y? )

2x 2y
2log(x* +y*)-2x 2log(x? +y?)-2
o B e s
2 B 5 = 7
ox [log(x2 +y2)] y [log(x2 + yz)]
2
11. Ifuzlog(x3+y3+z3—3xyz) show that i+£+2 u:——9 :
ox oy oz (x+y+2)
Given u = log(x3 +y +z —3xyz)
2_ 2_ 2_
Here @: 3x"-3yz . Ou 3y" —3xz - Ou 3z° —3xy

& X+y +2-3xyz’

Therefore

ou ou au_3(x2+y2+22—xy—yz—xz)_

oy _x3+y3+z3—3xyz, g_x3+y3+z3—3xyz

3(x2+y2+22—xy—yz—xz) B 3

—t—t—=
ox oy oz

o o oY
—+—+— | u=
ox Oy Oz

X+ +z =-3xyz

- (x+y+z)(x2 +° +22—xy—yz—xz) - xX+y+z

0 O\ Ou Ou Ou
—t—F— || —+—+=
ox oy 0z )\ ox Oz
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0 o0 0O 3
=| —+—+—
(ax oy 62](x+y+zj

_ 3 3 3 B 3
(x+y+z)2 (x+y+z)2 (x+y+z)2
9

(x+y+z)2

If f is afunction of v and v and u =e"cosy, v=e"siny, prove that

12.
2 2 2 2
et )
Since f isa function of u and v and u, v are functions of x, y, we have
of o _ o o

o o ou ofov .
== —+ = —=¢'cosy—+e'siny—=u—+v
Ox Ou Ox OvOox ou ov ou ov

and hence —:u—+vi
Oox ou ov
2
2 (1202 L)
Ox ou ov ou ov
G (/A i TSN 0 AN
ou\ Ou ov ov\ ou ov
2 2 2 2
=u ua{Jrg +uvaf+uvaf+v vaj;Jr% ..... Q)]
u Oou Ooudv ovou ov ov
f o  d

and hence —=—vi+u—
oy ou ov
2
0 { :(—vi+u£j(—vg+ug]
oy ou Ov ou  Ov
2 (L T2 (2L )
ou ou  ov ov ou  Ov
2 2 2 2
RPN O A Y OV A IO
Ou oudv ov ovou Ou ov

Adding (1) and (2), we have
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+u

°f + o’f =(u2 o’f g]+uv ’f +uv o°f J{vz of +qu+v2 (Sz_f

ox> oy ou’ ou oucdv ovou o’ ov ou’
2 2 2
-V u8f+g —u v8f+g +u28j;
oudv ov ovou Ou ov
2 2
) CL4 2
ou” Ov

13. If f is a function of u and v and u = x> — y*, v=2xy, prove that

aZ_f azf:4(xz+y2)(az_f+az_fj

+_
o’ o o’ v

Since £ isa function of u and v and u, v are functions of x, y, we have

g=ga—u+g@=2xg+2yg and hence £=2x£+2yﬁ
Ox OuOx Ovox ou ov ox ou ov
2
0 J: =(2x£+2y2j(2xg+2ygj
ox ou ov ou ov
:2xi[2xg+2y@)+2y2(2xg+2y@j
ou ou ov ov ou ov
o’ f o’ f o’ f o’ f
= 4x° +4 +hxy —+4y> —L .. 1
¥ ou’ ad ouov ad ovou 4 o’ @
@:ga—u+@@:—2y%+2xg and hence 2:—2yi+2x—
0y Oudy Ovoy ou ov oy ou ov
2
0 ]: =(—2y£+2x£j(—2yg+2x@j
oy ou ov ou ov
:—ZyQ(—Zyz+2xgj+2x£(—2y@+2x@j
ou ou ov ov ou ov
o’ f o’ f o’ f o’ f
=4y’ —- -4 —dxy—T—+4x" . 2
4 ou’ xy@u&v xyavau g oV’ @)

Adding (1) and (2), we have

2 2 2 2 2 2
0 {+%=4x2%+4xy of +4xy of +4y° 0 J:
ox~ Oy ou oudv ovou ov
o’ f o’ f o’ f o’ f
+4y* —L -4 —4 +4x’
4 ou’ i ouov i ovou g ov’
o’f o0'f
_ 2 2
_4(x +y )[auz + o

https://doi.org/10.5281/zenodo.15288142
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Implicit Differentiation

Suppose that z = f(x,y) and y = g(x).

Find a formula for % \ v
dx & &
&y v

The diagram is

It follows that 4z = o + & . (D
dx Ox Oydx
Consider the function f(x, y) =0 where y = g(x). Then f(x, g(x))=0. If z= f(x,y), then by

assumption % = %f(x,g(x)) = %(O) =0

Therefore from (1),

Ox Oy dx
Ozdy _ &
oy dx ox
oz
b __ox
dx oz
oy
3 3 ., dy 2 2 dy
Example: Let x” + y° = 2xy. Find R Example: Let x° + y° =2. Find .
X
22
Let z=x"+)’—2xy. Then Let z=x3+y3—-2. Then
0z 0z oz 2 oz 2
—=3x*-2y and —==3y"-2x —==x3 and —==y°>
o 4 oy x 3 o 3
2 2 L
Then d—y:—i:—3x2 2y 4 . “ 3 %
dx  z, 3y —2x Then & - _%:__3 lz_y_l
X Zy i 3 0

X

Example: Let e’ +InZL+15=0. Find Q
x dx

X

Let Z:e;+lnz+15.
X

Then %=ey.l+£(—%j and %=e; —iz +£(1J
oy yUx Yy ') y\x
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11 S|
=e’ . ——— :—%ey+—
y X y y
o L1
Then DA )i ad
X z x 5 1
Y 72ey+*
y y

Total Derivative

If z=f(x,y), where x=g,(t) and y=g,(¢t) then we can express z as a function of ¢ alone by

substituting the values of x and y in f(x,y). Thus we can find the ordinary derivative %

which is called the total derivative of z. Here dz = %.dx + %.dy
X

dz . o : . .
To evaluate <= without substituting the values of x and y in f(x,y), we introduce the chain
t

rule.
The Chain Rule

dz 0z dx 0Oz dy
1. If z= ), x=g ()& y=g,(t). Then —=— —+— —
z=f(x,p), x=g,() & y=g,(1) A ox di oy di

e

dt

E})/ \qj
]
-

@

dt

dw owdx owdy ow dz
2. fw=f(x,y,2), x=g,0), y=g,(t) and z=g,(t) Then —=—.—+—.—+—.—
w=f(x,0,2), x=g ), y=g() and z=gy(1) i od o d e

0z 0Oz Ox 0Oz Oy
3. If z= , V), X= V)& y=g,(u,v). Then —=—. —+—.— =—. .
2=/@y), x=gwy) & y=g,0wv) ou oxou Oy du Ov ox ov By v

&z oz ox az oy
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Solved Problems on total derivative

. . g d . . e
Let z=x%", x=sint and y=¢. Find 2=. Verify the result by direct substitution

We know that
d_0z dv 0z dy
dt ox dt oy dt

=2xe’ cost+x’e’ 3¢t

= 2(sin t)e(ts) cost+3 (sin2 t) e(t3)z‘2
By direct substitution: Given z=x’¢’ =sin’t.¢’
(3t2e’3 ) + (e’3 )(2sintcost)

Now % = (sin2 t).

If z=x"+)" and x=¢, y=2at, find “,

2.

oz dv & dy
dt ox dt oy dt

=2x2t + 2y.2a

=4xt+4ay
j, x=¢ and y=t’. Find &, Verify the result by direct substitution.
By direct substitution:

Let z:sin(
y
160 | Page
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dz

dz _ oz dx+8z dy
dt

55 oy dt

Let z=xIny, where x=u"+v* and y

We know that

0z 0Oz 8x oz oy
E 6y “Ou

2— =(Iny)(2u) +( j(2u)

2

u’+v
=2u.ln(u2—v2)+2u. —
u- —v

Let w=xcos yz°, where x =sint, y=t* and z=¢'.

We know that a = ow @ ow dy
di oxdi oy di

2
=u —V

Lo ds
Oz

dt

. . [xJ . [ej
Given z=xsin| — |=sin -
y t

Find 6_ and 8_2
ou ov’

so 852 0, 52 00
ov ox v oy ov

o _ (In y)(2v) + [1J(—2v)
ov y

2 2

u +v
:2v.ln(u2—v2)—2v. —
u - —v

Find d—w
dt

YV _ cos yz*.cost — xz>sin yz*(2t) — 2xyzsin yz> (e’)

dt

2 2t

= cos (tzez’ ) cost —2te* sin (tzez’ )(2t) —2t%* sintsin (t e )

Letw:\/;+yzz3,wherex=l+u2+v2,y:uvandZ:3u Flnda—w&a—w
ou  Ov
We know that Also
ow _ow 6x+6w6y+8_w@ ow _ow Ox 8w8y+%@
) dy Ou 0z Ou o ox ov dy Ov Oz Ov
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ow 1
— =——Qu)+2y2’°(v)+3y%2°(3
™ 2\/;() yz"(v)+3y°z°(3)
-4 +54u*v* + +81u™?
JI+u? +v?
u

= +135u"’

Vl+u? +V°

Let f(x,y)=x"+3’+3xy—1. Then Y _

f.=3x"+3y and fy=y2+3x

dy _ f, __3x2+3y__x2+y

dx f, 3y* +3x Y +x

Also
du_ou o dy
dx  ax Oy dx
1 1
:{x.—.yﬂogxy}+[x.—.x+(0)logxy}{
Xy Xy
2
=[1+logxy]+{£}{—x2+y}
il y +x
x(x*+
:[1+logxy]—w
y(y +x)

8. Suppose that z = f(x,y), x=g(u,v), y =h(u,v), u = j(t), v=~k(t). Find a formula for CZ—W

We draw the diagram

If u = xlogxy where x’ + )’ +3xy =1, find Z—u

ow__1_
ov 2\/;
v

= 2(uv)(3u)3(u)

Nl+u? +°

S S VIR

Nl+u? +V°

(2v)+2y2° (1) +3y°2%(0)

X

i
/.

_x2+y
Y +x

t

Using the four paths, leading from w fo ¢, we find that

dz 0z Ox du

dt oxoudt oxovdt oyoudt

Govdy Gzydu &y dv
oy ov dt
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Change of Variables

If z= f(x,y)where x=g,(u,v) & y=g,(u,v). Sometimes itis necessary to change the
expressions involving z, x, y, z_, z, efc. to expressions involving z, u, v, z , z, etc.

> Tud v

0z 0z Ox O
If v is considered as a constant, then ZE2aZ Q Similarly regarding u as constant, we

du oOx du Oy ou
have a—z o & @ @ These are system of simultaneous equations in o and 6_2
oy ox 8\/ dy Ov ox oy
On solving these equations, we get their values in terms of 2—2, Z—Z, Z, U, V.
u  Ov

Note: In the above, instead of the substitutions x = g,(u,v) & y = g,(u,Vv), suppose
u=(x,y) & v=g,(x,y), then == = T =2 OV g =02 Ou = Ov
Ox oOu Ox Ov Ox dy du dy ov dy

Solved Problems on Change of Variables

1. If z= f(u—v, v—u), then show that %+@=0.

ou Ov
Let »=u—v, s=v—u and hence z isa function of », s and r, s are functions

of u,v.
%:ﬁﬂJr@@:%(l)J%( 1)
Ou Ordu Osou Or Os

82 _ Oz 8r+8z Os 82( 1)+@(1)
8v orov 0Osov or Os

0z 0z Oz 1574 oz oz
— 4 —=—(1 1 1 0
8u+8v ﬁr()+6s( )+8r( )+8s()

2. Ifu=f(x-y,y—z,z—x),then show that a—u+a—u+a—u:0.
ox Oy 0Oz

Let r=x—y, s=y—z, t=z—x and hence u is a function ofr, s, t andr, s, tare
functions of x,y, z.

Oou Ouor Ouods Ouot Ou ou ou
u_oudr ouds oudt _fupg), ), My
Ox Orodx OsOx Otox or 0s ot

Ou _Oudr Ouds Oudt _ou ou ou
== —1)+—(1)+—=(0)
8y or dy 0Os oy ot 8y or os ot

8u Ou Or Ouods Ou 8t _ Ou ou ou
=2 = —(0)+=(-1)+=(1)
82 8r 0z Os Oz Ot 82 or Os ot

ou Ou Ou Ou Ou Ou Ou Ou Ou
—+—+—= —————+——-—+—=0
ox Oy Oz or ot or Os 0Os Ot
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0z Oz 0z

z
If z=f(x,y) and x=¢"+¢", y=e"“—¢', provethat —— —=x——-y—.
S (x,) y p o o o yay

From the given data, 2= e, o =—e", ¥ =—e", ¥ —
ou ov ou ov

0z 0z Ox 0z oy _0z , 0Oz

—— —e' ——e

ou Ox ou dy ou ox oy
0z 0z Ox 0Oz Oy oz ., 0z ,

=—. —=——0e
ov Ox Ov 0Oy Ov ox oy
Subtracting

6z 0z 0z , Oz _, 0Oz ., Oz ,

———=—¢'—-——e"'+—e " +—e

ou ov o oy ox

v o\ 0z W 0z 0z 0z
:(e +e )——(e —e )— =XxX——y—
ox oy ox oy
" v Oz oz ,,0z
If z=f(x,y) and x=¢€"cosv, y=e€"sinv prove that x—+y—=¢"" —
ov " Ou oy
From the given data, §=e“ cos v, X e sinv, D _ e siny, —=¢"cosv
ou ov ou ov
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0z 0z Ox 0z Oy 0z Z
——+—.—=—=—r¢"cosv+—.e"sinv

ou  ox ou oy Ou Ox oy
0z 0Oz 4
— =—.,"cosv.e"sinv+—.e"sinv.e" sinv
ou Ox oy
= % e™ cosv. sinv+% e*sin’v............ (1)
X

0z 0z Ox 0Oz Oy oz , . oz ,
—=— —+—.—=——2¢"sinv+—=¢e" cosv

v ox v oy ov ox

0z oz , . u oz , "
x—=——=¢"sinv.e" cosv+—e" cosv.e’ cosv
ov ox oy
0Oz 0z
=——¢"sinvcosv+—e™ cos v.......... (2)
Cox oy

Adding (1) and (2)

82 0z 0z o, ) 0Z o5y .2 0Z 4 . 0Z 5, >
—+y—=—-c¢e"cosv.sinv+— esin" v——e " sinvcosv+—e" cos’ v
8\/ 6u ox oy ox oy
)z ) oz
=— ¢™sin’ v+—e™ cos’ v
oy oy
Oz )
= ™ (sm2 v+cos® v)
y
82 2
oy

.0 ? . .
Transform the Laplace equation a—bzl + —L; =0 into polar coordinates.
X~ oy

We know that the Cartesian and polar
relationships are

x=rcos@, y=rsiné and

r=yx’+)?, 0=tan' L \
X

Also o0 _ 1 y_ y _ rsind_ sinf
Ox szz x2+y2 P’ r
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or 2y y 00 I 1 X rcos@ cos@
—=T=——sm9 and —=- =5 =——5 =
oy 2/x+y r oy 1+L2x X +y r r
X
Therefore a_uza_u@+a_u @ 8u 9_6_usml9 nd
Oox Or Ox 00 ox 8r 00 r
8u _Ou Or Ou 89 8u ) Ou cosd
——t— sin@+—
6y or oy 00 6y o o0 r
i.e. £=£ .COS 9_ism9 and £=ﬁ .sin 0+icos0
ox oOr 00 r oy or o0 r
@_2{&4} (6 9_ism9j(ﬁu e_a_usm@)
ox*  ox| ox or 00 r or 00 r
ocu 0’u sin@ 0’u sin’@ sin*@ou _sin@cosO ou
=—cos -2 cosfd+————+ —+2———
or o6or r 00~ r r or r 00
u 0| ou (6 . 0 cos&’j(@u . ou cos@j
— === |= —.sin@+— —.sinf+—
oy~ Oy| Oy or o0 r or o0 r
ou ., o*u cosé . 0’u cos’@ cos’@ou _sinfcosd ou
=——sin 0+2 sin @ + > —+ —_—— > —
or o06or r 00~ r r or r 00
Adding, we get
O'u o'u u 1 du lau
—t——=——t———+—
ox> ot ort P oe ror
Exercise

a’zy

1 Use partial derivative to find —-, when x* +y* =4a’xy

dzy

2 Use partial derivative to find —=-, when x° + )’ =3axy

o'u B ou
ox’0y  OxOyOx

3 If u=x", show that

4 Find % and 2—; if (i) z=x"y—xsinxy (i) z(x+y)=x"+)’
5 Verify f,, = f, if f:sin*%

Chain Rule

1 If u=xy+yz+xz, where x=¢', y=¢"' and z-; fmd%
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2 If u=sin"'(x—y), where x=3¢, y=4 and show that % -3 -
I N1-t¢

ox or

2 2 2 2
3 Ifu=f(x,y), where x=rcosé, y=rsiné, prove that [a_uj +[8_u] :[a—uj +%(8_u)

oy
3.2 3.2 2 . du
4 Ifu=x"y"+y’x", where x=at", y=2at, find e

5 If z= f(u,v), where u=x"—y*, v=2xy prove that
2 2 2 2
() 5] |5 H5)
ox oy ou ov

Substitution Method

1 lfu= f(——ijprovethatxZ—+ya—u+ ou =0.

y z X X oy &

2 If z= f(ex—az,cy—bz) prove that aZipE g
ox oy

3 Iff[y_x,z_ j 0, showthathaf 2@:0.

00

Xy = zx oy
2 2 2 2
4 If z=f(u,v) where u =Ix+my, v=1Iy—mx, showthata—+a—§=(lz+m2) a—i+a—f .
ox> oy ou~ Ov
Implicit Function
1 Find d_y, if x> +y° =3ax’y
dx
2 Find d_y’ if x’+y"=c
dx
codu o, 2.2 2.2 2
3 Find —, 1fu—(x +y ), where a°x” +b°y" =c
dx
4 Find d—u, ifu=tan‘1z, where x* +y* =¢?
dx X
Jacobians
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ou Ou
ox Oy

If u and v are functions of two independent variables x and y, then the determinant o 8 is
A% A%
o oy
called the Jacobian of u, v with respect to x, y and is denoted by Ou,v) or J( idd J
o(x,y) X,y
Similarly we can extend this concept to any number of variables.
Write the formula for Jacobian of u, v, w with respect to x, y, z.
u ou o
ox oy oz
The Jacobian of u, v, w with respectto x,y, z is —a(u’v’ W) = @ @ @
ax,y,z) |x oy oz
w v ow
ox 0oy oz
Properties of Jacobians
1. Prove that Aw,v) __a(x, Y) _ 1.
o(x,y) O(u,v)
Let u= f(x,y) and v=g(x,y). Rewriting this as x =¢@(u,v) and y=w(u,v).
Then o= X Yy O _o Ou o8, 0udy
ou Ox Ou Oy Ou ov ox Ov 0Oy Ov
D0 E DY g KB Y
ou Ox Ou Oy Ou ov ox Ov Oy oOv
Ou Oul |ox ox
5(u,v) a(an/) — ax ay x 81/1 8\/
o(x,y) O(u,v) |dv ov| |y Oy
ox Oy| lou Ov
u Oul |ox oy
_ ox 0y y ou Ou
v ovler o
ox oy| |ov oOv
udx oudy vox vy
B ox 0u Oy Ou Ox ou dy du
Nowar oy wor ooy
o dv Oy v Ox ov Oy v
o
o1
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owy) %)

a(x,y) o(u,v)

Note: If J = . Therefore JJ' =1

2. Chain Rule: If © , v are functions of » , s and r, s are functions of x and y,then
o(u,v) _ ou,v) o(r,s)
o(x,y) O(r,s) d(x,y)

Consider

Oou oul |Or Os
o,y) a(rs) _|or as| |ox o
o(r,s) o(x,y) |ov ov| |[Or Os
or as| |oy oy

Gudr ouds oudr ouds
Or Ox 0Os Ox Or Oy Os Oy
Oov Oor 0Ov ds Ov Oor Ov Os

or'ox Os ox Or oy os oy

ou Ou
oy
- ov  ov
o oy
_ 9,
Axy)
3. If u,v,w are said to be functionally dependent functions (i.e. there exists a

o(u,v,w)

relationship among them) of independent variables x , y, z then =0 and vice

a(x,y,2)
versa.

Note: Jacobians is used to change the variables in multiple integrals. If the transformations
x=x(u,v) and y = y(u,v)are made in the double integral ” f(x,y)dxdy,then f(x,y)=F(u,v)
o(x,»)

and dxdy =| J | dudv, where J =
O(u,v)

. This can be extended to triple integral also

Solved Problems on Jacobians

1. Find oxy) , if x=rcos@ and y =rsind
o(r,0)
x=rcos0, y =rsind
—x:cose, a—y:sine
or r
—x:—rsinﬂ, a—y:rCOSQ
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ox Ox

EPY] 6 -rsinf
oY) _|0r 99| C?S rem =r[c0529+sin2 9}=
or,0) |0y 0dy| |sin@ rcosd
or 06
If x=rcos@, y=rsin @ find M
a(x,y)
We know from the previous example that 0%,y) =
o(r,0)
By a property ox,y) or,0) _
o, 0) d(x,y)
o(r, 0
() 2ED
a(x,y)
ore) 1
ox,y) r
2 2 2
If =2 vtV fing 90
2x 2x a(xay)
2 2 2
w2 XY
2x 2x
ou -y’ v _ 2x(2x) (x +y)Q 2x2—x2—y2= 2 —y?
o 2% ox (2x) 4x*
u_y »_y
oy x oy Xx
N I R
O,v) |0 | _| 2% x
o(x, ov Ov
(x,y) 22 2oy
v 2x X
_ _y2 X_sz_yz
2x2 X x 2x

https://doi.org/10.5281/zenodo.15288142
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If x=u’—V’, y=_2uv evaluate the Jacobian of x, y with respectto u, v.

Given : x=u" —v° ¥y =2uy
gzZu %=2v
ou ou
@=—2v %=2u
ov ov

Oox  ox
X,y) _|Ou Ov
ou,v) |y o
ou ov
_2u —2v
2v 2u
:4uz+4v2
If u=xy and v=x+y find ox,y)
o(u,v)

Given : u = xy v=Xx+Yy
au_ o,
ox Y ox
ou ov
— =X —=1
y y

au o
O(u,v) _|ox dy|_|Y x=y—x
o(x,y) |V vl |11
ox Oy
Hence (x, ) = !
o(u,u) y—x
2 2
if u=2", v="", fina 9%
y o(u,v)
2 2

Given u:y— sz_

X y
ou_y v _2x
o ox y
ou_2y v_ x
a x G

https://doi.org/10.5281/zenodo.15288142
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7.

ox Oy
Ly
X x
x X
y oy
—1-4
=-3
o(u,u) 3

If x=u(1-v), y=uv,Provethat

ow,v) axy) _ |

(x, ) (u,v)

Given : x=u(l-v) y=uv
.‘.a—x=1—v .'.a—y:v
ou ou

ov ov
o o
o(x,y) _|Ou ov|_ I-v —u
ou,v) | v u
ou Ov

=u(l-v)+uv

=u—uvt+uv=u

Rewrite u & v interms of x & y .

x=u(l—-v)=u—uv

X=u—y V=

“u=x+yand v=

X+
o _ -y
ox  (x+y)’

ou_, Qg{u+w—q:{ x }
oy | (x+y) (x+y)°

o(u,v) :‘ | !
D) ey ()

ou

—=1
ox

= X + Y
(x+y)" (x+y)
_ Xty

(x+ )

1

(x+y)

ou,v) o(x,y) 1
T 0(x,y) O(u,v) T u
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8.

If x=ucosv and y

=usinv, prove that

0wy A%y _,
o(x,y)  Ou,)

Given x=ucosv and y=usinv
o cosy D siny
ou ou
ox . )y
— =—usinv ——=1ucosv
ov ov
Also SIMY Y e tanv=2 and wu’cos’v+u’sin®v=x’+)" ie u’'=x*+)’
cosv x X
ie. v=tan' 2 and  wu=.x"+)’
X
L B S B
ox ¥ X oy - y x
1+? 1+? 6_”_ 2x 6_”_ zy
X2 y XX 1 Ox 2yx*+y° oy 2yx*+y°
- x4y X’ _x2+y2'x _x __y
_ y _ x [xz_'_yz [xz_'_yz
xZ +y2 x2 +y2
o(u,v) |4 U,
a(X,y) Vx vy
X y |
B \/xz +y° \/xz +y°
_ y X a(X,Y) _ xu xv
¥ +y: X+ ou,v) |y, »
_ x’ N y? _|cosv  —usinv
(x2+y2) ’xz_{_yz (x2+y2) ’xz_i_yz sinv ucosv
24y =ucos’ v+usin’ v
(x2+y2) /x2+y2 =u

1

X'+

Therefore

o(u,v) y o(x,y) 1

o(x,y) 8w,v) J 1,

https://doi.org/10.5281/zenodo.15288142
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9. If x=v’+w’,y=w’+u’z=u’+v",find J'.

ou 0Ov ow
S0y | o &
o(u,v,w) |Ou Ov oOw

O O O
ou oOv ow
8_x =0 8_x =2y @ =2w
ou ov ow
(0 =2u 2 =0 > =2w
ou ov ow
% =2u % =2y % =0
ou ov ow
0 2v 2
J=12u 0 2w =0-2v(0—4uw)+ 2w(4uv —0) = uvw+ 8uvw=16uvw
2u 2v 0
J = M =16uvw
o(u,v,w)
11
J 16uvw

10. If x=rcosf, y=rsin 0,z=z. Find the Jacobianof x, y, z intermsof r, 6, z.
Given: x=rcosf, y=rsnl,z=z

or 08 oz
L0y |y &
o(r,0,z) |or 00 oz

& oo o

or 00 oz
— =cosf a—x=—rsin€ @=O %=0 g=0
or 00 0z or oo
a—y:sme a—y:rcosé? 6_y:0 %:1
or 00 0z 0z

cosd —rsmd 0
J=lsn@ rcos@ 0=0-0+1(cosB(rcosf)—sn O(—rsn )
0 0 1

=rcos’@+rsin’ @ =r(cos’@+sin’@)=r(l)=r
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11.

12.

13.

If x=u(l+v), y=v(l+u) find M

o(u,v)
Given : x =u(l1+v) y=v(l+u)
.'.a—x=1+v .'.8—y=v
ou ou
ﬁ:u a—y:1+u
ov ov
o o
5(x,y):au av:l+v u
ou,v) |y v 14u
ou Ov

=(1+uw)Q+v)—uv

=l4+u+v+uv—uv=1+u+v

If x=uv, y:z show that J.J' =1

v
Given: x = uv
Xy = u?
y_1
x v
@
_9(x) _|ou
ou,v) |
ou
8_u
, O(u,v) |ox
J = =
o(x,y) [V
ox
—2u

If x+y+z=u, y+z=uv, z=uvw. Prove that

X+y+z=u
X+uv=u

X=Uu—uyv

y+z

=uy

y4+uvw =uy

Y=uv—uvw

u
y==
%
S =Xy
X
v=_[—
ox
—| v u
av:l —Z/t=—E
i
ov
aul [Ny
| _|2vx 2y
G S
I o2fxy 24y
u .
j:—:l since y =—
yv

()

Z =uvw

o(x,y,z)
o(u,v,w)

_ v
4y 4x

2

uvy

https://doi.org/10.5281/zenodo.15288142
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X Y z
x=u(l-v) | x=uv(l—w) Z =Uuww
X sy | Dovacw | Eow
ou ou Ou
a_xz_u a—y:l,[(l—W) %:uw
av A% a\/
g:o a—y——uv a—z=uv
ow ow ow
ou 0Ov ow 1—v —u 0
o(x,y,2) _| 8_y=v(1_w) u(l-w) —uv
o(u,v,w) |Ou Ov oOw
o o o YW uw uv
ou ov ow

Taking u from 2rd and 34 column & v from 3rd column

I-v -1 0
=u*vpv(l-w) (1-w) -1
w w 1

:uzv[(l—v)(l—w+ w)+(v-vw+ vw):l

= uzv[(l—v)+v]

14. When u =22 and v :E, determine M
x y a(x, y)
Given u =22 and v="22
X Yy
_Y¥  Zz
ouy) e | _| ¥* x| _ a2 _i—il— )=0
oley) oov| |2 X Xy oy
y ooy
15. Find the Jacobian of y,,y,,y; withrespectto x,x,,x; if y = xj:% Y, = x;xl V= x;cxz
1 2 3
P W
ox, Ox, Ox,
a()’l,yz,y3,)_ 0y, 0y, 0y,
O(x,; x, x3) |Ox;, Ox, Ox,
oy; Oy; Oy,
ox, Ox, Ox,
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XoXs X5 X2
x; X, X,
I N
Xy x22 X,
X2 X TN
X, X, X3
1 XXy XX XX,
=———| XX, —X.X, XX
xfx§x32 372 371 172
XaXs XXy XX,
-1 1 1 -1 1 1
2.2 .2
R S I | R
SRl TS TR I R .
— (D[ =1]=1[=1 1]+ 1[1+1]
=0+2+2=4
16. If u=2xy,v=x"—y>, x=rcosf, y=rsin @, prove that 6(u,v).
a(r,6)
Ou ou| |ox ox
Au,v) _ Au,v) x,y) _|ox oy xg 26
o(r.0) olx,y) o(r,6) (ov v oy oy
o oyl lor o0
u=2xy, v=x"-y’, x=rcosb, y=rsinf
8_”=2y @=2x @=cos6’ 9 _sing
ox ox or or
a—u:2x @:—2)/ ﬁ—x:—rsine D o rcosd
oy oy 00
o(u,v) |2y 2x| [cos® -rsind
= X
o(r,0) |2x -2y| |sin@ rcosf
:(—4y2—4x2)(rcos2l9+rsin26?)
= —4(x2 +y2)r, " cos’@+sin* @ =1
=47, wx +y =ricos’O+risin’O=r"
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2 2
17.  Find the Jacobian of “>V with respectto >V, If “=2% apd V=% ~)",

u =2xy @=2y @=2x
ox oy
v=x’-y’ @:2X @——Zy
Ox Oy
ou ou
6(u,v)_8x oy| |2y 2x
a(x,y) |ov ov| |2x -2y
ox Oy
=4y’ —4x° = —4(y2 +x2)

18. Are the functions u = Xty
1—xy

and v=tan"' x+tan"' y functionally dependent? If so, Find the

relation between them.

Given: u:x+y v=tan" x+tan”' y
1-xy
ou _(-xpl-(x+y)(=y)  _l-xy+ay+y’ 1+
Ox (1-xy)* (1-xy)* (1-xy)®
8_u_(l—xy)l—()c+y)(—x)_1—xy+xy+y2 _ 1+x?
oy (1-xy) (1-xy)? (1-xy)’
ov 1 ov 1
—= > and —= >
oy l+y x  1+x
ou oul | 1+y’ 1+ |
Ou,v) _|ox oy| _|(1-x1)* (-xp)°
ox,y) |V v ! !
ox Oy 1+ x? 1+ y?
1+ y? 1 1 1+ x?

T (=—x)? 147 1x® (1-x)

= 1 2 1 2 =0
(I-xy)" (1-xy)

+
Since Aw,y) _ 0, u and v are functionally dependent. Also tan™' x+tan™' y =tan”' (u]
a(x,y) 1-xy
Therefore v=tan'u and hence u=tanv
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Exercise

1 Ifu=x" and v=y",find a(u,v).
a(x,y)
2 If u=xyz, v=xy+yz+xz, w=x+y+z,find v, w)
o(x,y,z)

3 Transform the three dimensional Cartesian coordinates (x,y,z) to spherical polar coordinates

(r,8,¢) and hence find the Jacobian of x, y, z with respect to r, 9, ¢.

4 Prove that u=sin"" x+sin™' y; v=xy/1-* + yyl-x" are functionally dependent and hence
Y y Ty

find the relationship between them.

Taylor’s series expansion of a function of two variables.
Taylor’s series of f(x,y) ator near point (a,b) is

f(x,y)=f(a,b)+%[(x—a)fx(a,b)+(y—b)fy(a,b)]+
%[(x—a>2Ax<a,b>+2(x—a)(y—b)j;y(a,m+(y—b>2fyy<a,b)]+

;[u—affm(a,b)+3<x—a>2<y—bmxy<a,b)+3<x—a>(y—b>2fw<a,b)+<y—b)mw(a,b)}

This is Taylor’s expansion of f(x,y) in powers of (x—a) and (y—>b).

Note: Taylor’s series of f(x,y) ator near point (0,0) is Maclaurin’s series

@)= 10,0+ [(D.0.0+()1,00]+
%[(x)zfm(o,m+2(x)<y>fxy<0, 0)+(»)’ £,,(0,0) |+

;[(xffm(o, 0)+3(x) ()£, (0,0) +3(X)(¥)’ £, (0,0) + (1) £,,,(0,0) | +.....

1. Find the Taylor series expansion of x” near the point (1, 1) up to the first degree
terms.

Function Value at (1,1)
S y)=x" fan=1=1
f.(x,y)=yx"" £ =11"=1
f.(x,y)=x".1ogy £.0,1)=1"1ogl=0
y y
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By Taylors Expansion
f@y)=fLD+ %[(x “DLAD+=DL0D ...

:1+%[(x—1)(1)+(y—1)(0)]+ .....

=l+(x-D+.....

Expand e"sin y in powers of x and y as far as terms of the second degree using
Taylor’s theorem.

Function Value at (0,0)
J(x,y)=e'siny /(0,0)=0
f.=e€'siny £.(0,0)=0
f,=e"cosy £,(0,0)=1
fo=€'siny £..(0,0)=0
Sy, =€ cosy £,(0,0)=1
f,=—¢€'siny £,,(0,0)=0

Taylor’s series of f(x,y) ator near point (0,0) is Maclaurins series

f(x,9)=1(0,0)+ %![(X)fx(O, 0)+(1).,(0,0) |+
%[(x)zfxx(o, 0)+2(X)() £, (0,0)+(»)* £,,(0,0) ]+
%[(xffm (0,0)+3(x)* (1) 1 (0,0) +3(x)()” £, (0,0) +(3)" £,,,(0,0) | ...
Substitute all the above values
f(x,y)=0+[0+y ]+%[x2 (0)+2xy+y*(0) ]
foy)=y+[xy]=y1+x)

Expand x’y+3y—2 in powers of (x—1) and (y+2) using Taylor’s expansion up to
the third degree terms.

Let f(x,y)=x"y+3y—2. Here a=1,b=-2.
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Function | Value at (1,-2)
f(x,y)=x"y+3y-2 | f(1,-2)=-2-6-2=-10
J.(x,y)=2xy | f(L,=2)=2()(-2)=—4
fu(x,y) =2y | fe(L-2)=2(-2)=-4
S (X, ) =0 | fx(1,=2)=0
fy(x,y):x2+3 | f,(L=2)=1+3=4

Sy (x,)=0 | f,(1,-2)=0

Sy (x,3)=0 | S (1,=2)=0

S (X, ) =2x | fo(1,-2)=2
Soy(%,¥)=0 | foy(1,=2)=0

S (X)) =2 | S (1,-2)=2

Taylor’s series of f(x,y) intermsof (x—1) & (y+2) is
1
[ =f=2)+ [ (=Df, (-2 + (¢ +2)£,0,-2) [+

@D 1,02+ 26 D0+ D1, (-2 + (7421, (D) ]+

%[(x—l)S [u(L=2)+3(x =1 (y+2) £, (L-2) +3(x = D(y +2) £, (L= + (¥ +2)* £,,, (1,-2) | +....

F3) =10+ L[ D4+ (r+ 2]+
;[(x—1>2(—4)+2<x—1)(y+2)(2)+<y+2)2(0>}+

%[(x—l)3(0)+3(x—1)2(y+2)(2)+3(x—1)(y+2)2(0)+(y+2)3(0)]+ .....

4. Expand e* cos y about (0,%) upto the third term using Taylor's series.

Function Value at (O,%j

f(x,y)=e"cosy f=0

f.=e"cosy f.=0

f,=—e"siny f,=-1
f.=e"cosy f.=0
fo=—€siny fo=-1
f,, =—e‘cosy Sy =0
fo. =e‘cosy fo =0
Sy ==€"siny S =-1
Sy =—€ COsy S =0
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Sy

11’1

Taylor’s series of f(x,y) at [

f(x,y)=f(0

Jxy)=0+2

: (x)(0)+(y——j( l)}l[x <0>+2x(y——]( 1)+(y——] ((»}

1!

31, ®) fm( j+3(x) [y—f

(o)

1 T s
7 fxr[ j+2(x)[y—5jﬂy 0,5]

Jlogholo5) fog) (s

2

=—y+—+

terms.

N|é1

le}

)
Jilo
[

+

o1 I 3z
2xy+2x— [+ —=|-3x"y+—
2 2[ Yy xz} 3{ AR

N

I
(5 nfo5)]

x3(0)+3x (y——j( 1)+3x(y——j (0)+(y——j (1)}

(ym

Expand e"log y as Taylor’s series in powers of x and (y—1) upto third degree

Function

Value at (0,1)

fx,y)=e'logy

f(0,)=€"logl=0

fi(x,y)=e"logy

fixy)=e' s
Y

£.(0,))=¢"logl =0

1,0, =

»—l»—

fo(x,y)=e"logy
1
.f;cy(x’y) = e T
y

1
fyy(x»J’) =-e 'y2

7.0, 1)=e°1og1=0

£y ==

—

£,0) ="~ =-1

—
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S, y)=e"logy £..(0,1)=¢"logl =0
o1 1
S (1) =€ ; fW(O,l):eO.I:I
o (O ==’ S =1
fvyy(x’y):_e 7 xyy WV l
1
ol 0,1)=2¢"==2
fyyy(an’)=2e ? fvyy( > ) € 1

£(xy) =f(0,1)+ll![(x)fx(o,l)+(y—1)fy(0,1)]+
21![(x)2fm(0,1)+2(x)(y—1)fxy(o,1)+(y—1)2 fyy(o,l)}r
%[(X)Sfm(0,1)+3(x)2(y—1)fm(0,1)+3(x)(y—1)2 Loy (0.1)+(y=1)

c*logy =0+ [x(0) + (y= D]+ [X°(0) + 2x(y =D +(y = (1)

+§[x3(0)+3x2(y—1)(1)+3x(y—l)2(—l)+(y—l>3<2>]+~--

- (y—1)+2%[+2X(y—l)—(y—l)2]+%[3x2(y—1)—3x(y—1)2 +2(y =1’ |+....

Expand e" log(1+ y) in powers of x and y upto terms of third degree using Taylor’s
theorem.

Function Value at (0, 0)
f(x,y) =e" log(1+) [=0
S =e"log(1+y) f.=0
fr=e"1+y)" /=1
f..=e"log(1+y) f.=0
fxy:ex(l—i—y)_1 So =1
Sy =€ (1+3)? Sy =-1
S =€ log(1+y) f. =0
fm:ex(1+y)_l fxxyzl
fxyy :_ex(1+y)72 fr)y :_1
Sy =26 (14 ))° F =2
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Taylor’s series of f(x,y) at (0,0) is
f(xy)= f(0,0)+%[(X)fx(0, 0)+(»)f,(0,0) |+
%[(x)zf,w(o,m+2(x)(y>fxy(o, 0)+(»)’ £,,(0,0) |+

%[(xffm (0,0)+3(x)* (1) £ (0,0) +3(x)(¥)’ £,,(0,0) +(3)" £,,,(0,0) | ...

X0)+y(1) , ¥ (0)+2xy () +y° (=)
1! 2!

N X 0)+ 3x2y(1) + 3)cy2 -D+ y3 (2) .

3!

e log(1+y)=0+

:ZJr2xy—y2 +3x2y—3xyz+2y3 N
I 2! 3

o) 2 2. 2 3
+ xyzy +3xy 3)60/ 2y + ..

7. Expand the Taylor’s series function f(x,y)=x"y"+2xy+3xy° of (x+2) and (y-1)
up to the third powers.

Function

f(,y)=x"y" +2x"y +3x)°
f.(x,y)= 2xy° +4xy+3y°
So(6,0) =2y +4y
frxx (x7 y) = O
S, (xp)= 2x°y+2x° +6xy
S ()= 2x* +6x
Sy (X,3)=0
S (X, y)=4xy+4x+6y
fxyy (x,y)=4x+6
Sy (6, ) =4y +4

Value at (—2,1)
f(-2,1)=2+8-6=4
f.(=2,)=—4-8+3=-9
f.(=2,1)=2+4=6
S (Z2,1)=0
f,(=2,1)=8+8-12=4
Sy (=2,1)=8-12=—4
Sy (=2,1)=0
[y (=2,)=-8-8+6=-10
Sy (=2,)=-8+6=-2
fo(-2,1)=4+4=8

Xxy

Taylor’s series of f(x,y) intermsof (x+2) & (y—1) is
1
SO = 2D+ [ (42 £ (2D + (=D /(2.1 |+

%[(Hsz)g(—z,l)+2(x+2><y—1)ﬂy(—2,1>+<y—1>2fyy(—2,1>]+

%[(x +2) £ (2,1 +3(x+2)(y - D f (=2,D)+3(x+2)(y - 1)2fxyy (2,D)+(y—- 1)3fm (-2, 1)} + e
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x*y? +2x7y+3x)° =6+ %[(x +2) (-9 +(y-D#4)]+ %[(x +2)%(6) + 2(x + 2)(y = 1)(=10) + (y = 1)* (-4)]

+ %[(x +2)°(0)+3(x+2)*(y=D®) +3(x +2)(y = D*(=2) + (y = D)’ (0)] + ....

8. Expand sinxy at (1,%) up to second degree terms using Taylor’s series.

Given function is f'(x,y)=sinxy

Function Value at (l,%j
f(x,y)zsinxy f=sin%=1
S =ycosxy A =(%jcos—=0
T T
=XCOSX = — |cos—=0
/s y f, (J >
2 . 2 2
S =—) sinxy fo=—|Z|sinZ="Z"
2 2 4
S =—xysinxy +cos xy fy=— ZlinZrcosE=_ "
’ 2 2
f,, =—x"sinxy f,=-( ? sin%: -1

Taylor’s series of f(x,y) at [1%) is

o i)
1 2 T T T
El:(x—l) - (1,5)4‘2(}6—1)()/—5)]%) (1’5j+

f(x,y):1+O+O+%{(x—l)2(—%jJJ(x—l)(y—%j(—%jJr(y—%jz(—l):|+...

:1+-%2(x-1)2_g(x_l)(yl]_(y_ﬁjz+...
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9.

Function Value at (1, %j
x e
f(x,y)=e"cosy /=5
f.=e"cosy f _&
x x \/5
¥ o e
f,=—€"siny fy:_ﬁ
f..=e"cosy __ ¢
fxx \/5
— ' 1 e
S, =—€siny fxy:_ﬁ
X e
f,, =—€"cosy fyy=—$
e
fuw=€"cosy Jow = NG
. e
fry =—€"siny S =5
f ___°
Sy =—€ cosy w2
e
fv ==
Sy =e€'siny "2

Taylor’s series of f(x,y) at [1%) is

1= (12 e i onn (1) (-2 )5 (12)]

T

,<x ) fxx( j+2(x 1)[y—zj

T

—' (x-1) fm[ j+3(x 1) (y——

f(xy)= f {(x )I y—%)
(x—1)° —2—2(x 1)( —

7 3(x-1) (

(x=1)°

+

R[50 55

4]fm L%}%c—l)(y—%j fm(l,

(
)

7

g

ol

~3(x— 1)@-%)

e

2
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Find the Taylor’s series expansion of ¢"cos y at (1,%} upto the third degree terms.
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10.  Obtain the Taylor's series of x’ + )’ +x)” at (1,2).

Function Value at (1, 2)
fey=x+y +x* | f1L2)=P+2° +()(2)* =1+8+4=13
fo=3x"+y" fo=3)7+2>=3+4=7
S, =3y +2xy f, =32 +2()(2)=12+4=16
S =06x foo=6(1)=6
S =2y [y =2(2)=4
f, =6y+2x £, =6(2)+2()=12+2=14
Jow =6 fow =6
Sy =0 foy =0
Jow =2 [y =2
Sy =6 [y =6

Taylor’s series of f(x,y) intermsof (x—1) & (y—2) is
@D =1+ G-DA0D+ (-2 1,0.2)]+

%[(x—1)2fm(1,2>+2(x—1>(y—2)fw(1,2>+<y—2)2/§,y(1,2>]+

SO 14302, 1D+ 36D =27 £, LD+ (=2, (D) ] e

o f(xy) =13+%[(x—l)7+(y—2)16]+%[(x—1)26+2(x—l)(y—2)4+(y—2)214]

+%[(x—1)36+3(x—1)2(y—2)(0)+3(x—1)(y—2)22+(y—2)36]+....
- 13+7(x—1)+16(y—2)+%[6(x—1)2 +8(x—1)(y—2)+14(y—2)’]
+é[6(x—l)3 +6(x—1)(y—2)> +6(y—2)"]+...

fy) =13+ T(x =) +16(y —2) +3(x—1)> +4(x — 1) (y = 2) + 7(y - 2)°
+( =D’ +(x=D(y-2)" +(y-2)°
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11.  Use Taylor formula to expand the function f defined by f(x,y)=x"+xy+)’
powers of (x—1) and (y-2)

Function
f(x,y) x? +xy+y2
fx(x y) 2x+y

Value at (1,2)

f(1L2)=1+2+4

fi(1,2)=2+2=4
)

B

fy(x y) xX+2y ,2)=1+4=5
fu(xy)=x fu(1,2)=
fo(x,y)=1 £, (1,2)=1
[y (x.)=2 £ (1,2)=2

Taylor’s series of f(x y) intermsof (x—1) & (y—-2) is
fy)=f1,2)+= [(x Df(1L2)+(y-2)f,1L2) |+

%[(x—1)2fxx<1,2)+2(x—1)<y—2)ﬂy<1,2)+(y—2>2fw(1,2>]+

flo,y)=4+— [(x D4+(y— 2)5]+ [(x 1) +2(x =Dy =2)+(y=2)°2 | +...

Exercise

Find the Taylor’s series expansion of ¢ at (1,1) up to the third degree terms.
Find the Taylor’s series expansion of y* at (1,1) up to the third degree terms.

Expand x’y+3y—2 in powers of (x—1) and (y+2) up to third degree terms.
Expand x°y+2x—3y in powers of (x+2) and (y—1) up to third degree terms.

'Y in powers of (x—1) and (y—1) up to third degree terms.
X

Ul W N

Expand tan~

Homogeneous Functions

th

An expression in which every term is of n" degree is called a homogeneous function of degree n

. This can be expressed as x" f (Zj . This can be extended for any number of variables.

X

Euler’s Theorem on homogeneous functions

1. If u is a homogeneous function of degree n in x & y then x2—+ y% =nu
X
ou ou Ou
Note: If u# is a homogeneous function of degree »n in x, y & z then x—+y—+z—=nu
ox oy Oz
2. If u is ahomogeneous function of degree n in x & y then
2 2
28021+2xy Ou + 28L2£=n(n—l)u
Ox Ox0Oy oy
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Solved Problems on Euler’s Theorem

If u :log(x2 +xy+y2) prove that xa—u+ya_u:2_

ox oy
Given that u = log(x2 +xy+ yz)
Here u is not a homogeneous function
Taking log on both sides in equation (1) we get
et = (x2 +xy+y2)
To check homogenous:
et = (t2x2 +tixy+tiy? ): t? (x2 +xy+ yz)

e"is a homogeneous function of degree 2in x & y

.. By Euler’s theorem xﬁ + yﬁ =nf, we have
ox ox

x%(e“)w%(e“):z(e“).

u au u u

xeé' —+ ye' —=2¢€".
ox oy

ou ,ou_

x— + 2.
ox oy

2 2
- +
If u=tan" Al showthatxa—quya—u:lsinzu.
xX+y ox oy 2

2 2
) +
Given u = tan~!| 2
X+y
2 2

anu=>_"Y _____ )
xX+y
2 2
+
Letf(x,y):tanu:x Y
x+y

Flon ) =2+ W) ={’“ i }tf(x,y)
x+ty xX+y

" f(x,y)is a homogeneous function in x and y of degree 1.

of o

By Euler’s theorem x =+ y = =nf'
ox oy

0 0
= x—((tanu)+ y—(tanu) = tanu
ox oy
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, Ou ) ou
=>sec ux—+sec uy—=tanu
ox oy

N ou ou
=>sec U/ x—+y—|=tanu

ox oy

ou Ou _ tanu

=>x—+y —
Ox oy sec u

smu sin u
= cos” u tanu = ,secu =
cosu { cosu
=sin u cosu
l . . .
=Esm2u [‘.'sm2u=2s1nucosu]
ou ou )
X—+y— =—smn2u
ox oy
3 3
+ 0 0 .
If u = tan | 272 ,provethatx—u+y—u:sm2u.
X—y ox oy

3 3
+
Given that u =tan™ [uj
X—=Yy

xX—=y

3.3 3.3 3 3 3 3 3
f(zx’zy):(Mj:(t_x +y j:(tzuj

x—ty r x—y xX—y

Here f =tanuis a homogeneous function of degree 2 in x and y

By Euler’s theorem x o + yg =nf
ox ~ 0x

3 3
f:tanu:(x ry j

0 0
x—tanu+y—(tanu) =2tanu
ox oy

, Ou , Ou
xsec’u— + ysec  u—=2tanu
ox oy

) ou ou
sec” u xa—+y— =2tanu

X oy
ou ou
X—+y—=2tanu
ox oy sec” u
el au—2smu.c0s2u

Ox ya— cosu
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ou

ou
X—+y—=2sinucosu

ox oy
xa—u+ya—u—s1n 2u " sin 2u =2sin ucosu
ox oy

1
If u=tan"'| —="Y_ |. show that xa—u+ya—u=—sin2u
Jx+y ox oy 4

Take tan u = i=f(x,y)
Ky
xt+yt ; X+y

f(xt, yt) = JT+J__t J_+\/-—t2f(x,y)

1

f(x,y) is homogeneous function of degree %

By Eulers theorem,

X—+y—=nu
ox oy
ot ot
. ( anu)+y (tanu) :ltanu
ox oy 2
2 2 1
xsec’u— +ysec’u— =—tanu
Ox 2

>
|
+
«
|
Il
I
w2
z.
=
o
2
=

- \/— ou ou

,show that x — + y—=0.

X +\/; ox oy

Given: u=sin"' M
Jx+yy

.

X+\/— =f(x,y) say

R I T A e

f(x,y)is a homogeneous of degree n=0

sinu =

https://doi.org/10.5281/zenodo.15288142
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By Euler's theorem

of of
Xx—+y—=nf
ox ~ 0x
of of
Xx—+y—=0
ox ox
< O(sinu) ry O(sinu) _0
ox oy
ou
xcosu—+ycosu—=0
ox

divide by cos u on both sides

Xx—+y—=0

ox oy

Hence proved

2 2
If u=log Xy , prove that x@_u+y6_u:1
X+y ox oy
2 2
Givenuzlog{x +y}
X+y

2 2
u X +y
=e =
f |:x+y}

Here f is homogeneous of degree 1. By Euler theorem,

x@+y@:f where f =e"
ox oy
. Ou LJou
xe'—+ye' —=e
ox oy
ou ou
x—+y—=1
ox = Oy
. ou ou 1
7. If u=sin" Xty ,prove that x—+y—=—tanu
L;w; b o Moy T2
Given u = sin || 2 _
k=

—sinu=| 21 _
]
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Here f is homogeneous of degree 1/2. By Euler theorem,

of o 1 )
X—+pyp—=— where =sinu
ox yay 2f /

ou ou 1 .
XCOSU—+ ycosu— =—sinu

ox 2
ou ou
X—+y—=— tanu
ox oy

2 2
. +
If u=sin™ | =2 prove that xa—u+ya—u:tanu .
x+y ox oy

2 2
, X+
Given u =sin 1(—)}]

X+ Yy
2 2
Letf(x,y)=sinu=x Ty
X+y
) + () x*+)°
fio, ty) = L O X
x+1ty x+y

. f(x,y)=sin u is homogeneous function in x and y of degree 1.

By Euler’s theorem x g—f + yﬁ =nf

X Ox

xi(sin u)+y£(sin u)=snu
Ox oy

ou ou )
cosuxa— + cosuy— =sin u

X oy
ou ou
X—+y—=tanu
ox oy
If u=cos"| -2 Y _| Prove that xa—u+ya—u=—lcotu .
N oy 2
Given

u=cos” I:H—y}
Ve +y
Jx+y

Let f(x,y)=cosu= {%}
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10.

_ x+ty _ % x+y _ %
f(tx’ty)_|:\/g+\/5:| t I:\/;+\/;:| tf(x:y)

1
f(x,y)is ahomogeneous function in x and y of degree 5"

By Euler's theorem xl+y o =nf

ox oy
d(cosu)  (cosu)

S +y o =n(cosu)

} ou . ou 1
—sinu.x——sinu.y— :Ecosu

ox oy
ou ou 1
—sinu| x—+y— | =—cosu
ox “oy| 2

ou  Ou Ecosu [ cosu }
X—+y— =cotu

ox oy —sinu sinu

ou ou 1
X—+y—=——cotu

Ox Gy 2

: 1
If u=sin"| 22 , prove that xa—u+ya—u:—tanu and
Jx + 2

\/; ox oy
, 0%u qu 8 sinu cos2u
X =~ + 2 —_— —_— = T3
ox 8y 4cos’ u

@v
Given u =sin~ { Xty }

fx,y)=sinu = {ﬁ%\y/ﬂ

| Ix+iy =L xX+y _2 x+y
o= I g o

Therefore f(x,y) is a homogeneous function of degree % .

of  of

Therefore by Euler’s theorem x—+y—= lf where [ =sinu
ox “oy 2

ou u 1 .
XCOSuU—+ ycosu— =—sinu
ox oy 2
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ou

Divide by cosu, we have xa—u+y5 = %tanu (1)

Oox

Differentiate (1) partially w.r.t x

o’u  Ou o’u , Ou

X——+—+y =—sec u.—
ox~ ox ~ oxoy 2 ox
o’u

X—
2
ox

Oox

2
y Ou =(%seczu—lJa—u....(2)

Ox0y

Differentiate (1) partially w.r.t y

o0’u o’u 8u 1 , ou

X +y—+—=—sec u.—
oyox " oy’ 8y 2 oy
o’u

X
0yox

Multiply (2) by x and (3) by y and adding, we get

2
+ya_L2l = (lseczu —lja—u....(_’))
oy 2 oy

, 0’u 82u 62u ,0%u 1 ou
X —+xy +y 2—x —sec’u—1|—+y
ox 8x8y 8y6x 2 o)
, 0%u 82u 5 o* u_ 1 ou ou
X —2+2xy —=|=sec’u—1| x—+y—
ox Ox0 8 ox oy
2 2
xz—z+2 Ou 8_= 1sec u-— 1]( tanuj
X 8x8y 8

3 3
If u=tan' [m},
X=y

ox’ 8y

Given u =tan" [

https://doi.org/10.5281/zenodo.15288142

2

1 sinu lsmu
4 cos’u 2cosu

(
Sl el
&

sinu
=— - [—1+2c0s2u]
4cos’u
sinu cos2u 5
=————, cosTu=
4cos’ u

X

1+ cos2u

2

prove that x@_u + y% =sin2u and

Ox

2
+y Y 2cos3usinu.
o’

']

1
—sectu—1
[2 jﬁ
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f(x,y):tanu:{x3+y3}

X=y
f(tx’ty): t3x3+13y3 :ﬁ x3+y3 :tz x3+y3
x—ty t| x—y xX—=y

Therefore f(x,y) is a homogeneous function of degree 2.

Therefore by Euler’s theorem xgl + yq =2f where f=tanu
X
xsec’ ua—u+ysec2 u@_u =2tanu
ox oy
.. ) ou ou tanu ) .
Divide by sec”u, we have x—+y—=2———=2sinucosu =sin2u ....(1)
ox " oy sec” u
Differentiate (1) partially w.r.t x
o’u ou o’u ou
X—+—+y =2cos2u.—
ox~ Ox = OxOy ox
2 2
2y O (aeosou-1) 2. 2)
ox Ox0y ox
Differentiate (1) partially w.r.t y
o’u o’u  Ou ou
X +y—+—=2cos2u.—
oyox =~ oy° Oy oy
2 2
X Ou +ya—bzl = (2cos2u —l)a—u....(3)
oyox = Oy oy
Multiply (2) by x and (3) by y and adding, we get
2 2 2 2
xza—L2l+xy Ou +xy Ou +y° 0 L; :x(2cos2u—l)a—u+y(2cos2u—1)a—u
ox Ox0y 0y0x oy ox oy
2 2 2
xza—7/2l+2xy Ou +y28—7;l =(2cos2u-1) xa—u+ya—u
ox Ox0y oy ox oy
2 2 2
xza—bzl+2xy Ou +y28_L21 =(2cos2u—1)(sin2u)
ox Ox0y oy
=(2cos2u—1)(sin2u)
=(2cos2usin 2u —sin2u)
=sin4u —sin2u, .’ sin2x=2sinxcosx
=2cos3usinu, sinC—sinD:ZCOS(C;D]sin(C;DJ
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Exercise

3 3

1 If logu= X Ty , show that xa—u+ya—u=2ulogu
3x+4y ox = Oy
2 1 u=sin" 2T 237 04 the value of x 21y 1 29
X +y +z ox oy 0Oz

3 Verify Euler theorem for f(x,y)=23x"yz+5xy°z +4z*

2_72

4 1If sinu="22 , show that x%+ya—u:3tanu
x+y ox oy

2 2 2 2
5 If u=tan" {y_} prove that x’ Ou +2 Ou Ou
X

2 . 2 .
Xy + =—sin“ usin2u.
ox’ Ox0y 4 oy’

Extreme Values

Let / be a function of two variables x and y andlet R be a set contained in the domain of 1.

Then f has maximum value on R at (x,,y,) if f(x, )< f(x0,¥)-
Also f has minimum value on R at (x,,y,) if f(x,3)> f(x0, 1)

Further, / has relative maximum value at (x,,,) if there is a disc D centered at (x,,y,)and
contained in the domain of f suchthat f(x,y)< f(x,,y,) forall (x,y) in D.
Also f has relative minimum value at (x,,y,) if there is a disc D centered at (x,, y, )and

contained in the domain of f suchthat f(x,y)> f(x,,y,) forall (x,y) in D.

Note: A maximum or minimum value of a function is called its extreme value
Note: Let / have arelative extreme value at (x,,y,). If /" has partial derivatives at (x,,y,),

then 7, (xy,%y)=7,(x,¥,)=0. Wesay that f has a critical point at (x,, y, ) in the domain of
S £ (x%0530) = £, (%, ,) =0, or if one of the partial derivatives does not exist,

Hence the necessary conditions for f(x,y) to have a maximum or minimum at (x,, y, ) are

fx(x()aJ’o):O and fy(xoayo)ZO.

Stationary Value: f'(x,,y,) is said to be a stationary value of f(x,y),if £, (x,,»,)=0 and

£, (%5,%,)=0. i.e. the function is stationary at that point.

Note: Every extreme value is a stationary value but the converse may not be true.
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Example: Let f(x,y)=3—-x"+2x—)°—4y. Find all critical points of f.

Now f,=-2x+2 and f,=-2y-4
If f,=0 then —2x+2=0 ie. x=1.1f f =0 then —2y—-4=0 ie. y=-2
Therefore (1,-2) is the only critical point of 1.

Example: Let f(x,y)=+/x"+»? . Find all critical points and all relative extreme values of

I
H 2,2
o N ftoy)=sqri(x+y’)
fix,y)= — and :
X +y |
39 ‘ \ ‘ 3
S y) =—=— R,
: " Ry
- QTR
Since the partial derivatives exists for - \\&Q\\\:\\\\\\\\\\Q\\Q\\\\\\\W" L
all points except the origin. Hence ~\\"‘\\\3}\\\‘\‘\\\\\\““ '\‘\‘/
(0,0) is a critical point of f. N 7

Also note that no point (x, y) such that
J.=0 and f =0.

Since £(0,0)=0and f(x,y)=0 for all (x,y), it follows that 0 is the only relative minimum

value of /', and there is no maximum value.

Note: A function need not have a relative extreme value at a critical point.

Example: Let f(x,y)= )" —x’. Show that the origin is the only critical point but there exists no
relative value of f.

Here f (x,y)=-2x and S (x,»)=2y
If /,=0 then x=0.1f f =0 then y=0
Therefore (0,0) is the only critical point of 1.

However f(0,0)=0 is not a relative extreme value of . Because f(x,0)=—x><0 for x=0,

and f(0,y)=3>>0 for y=0. Hence f hasno relative extreme values.
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Working Rule

1. Let f(x,y) beagiven function. Find g and g

ox

oy

2. Solve the equations Zl =0 and % =0 simultaneously and let the solutions be

X

(a,b), (c,d), ....... , called stationary points.

3. For each solution (a,b), find the values of 4=

2
2 Bzaf’
ox Ox0y

4. Consider a solution, say (a,b). then function f(x,y)

c-21
y

and A= AC — B>,

has maximum at (a,b)
if

has minimum at (a,b)
if

has neither maximum
nor minimum at (a,b)

may or may not have
relative extreme at

https://doi.org/10.5281/zenodo.15288142

A>0and A4or C<0 | A>0and Aor C>0 if (a,b) if A=0
A<0. Then (a,b) is i.e. further
said to be saddle investigation is
point. required
z
1\
5. Similarly examine the other pairs of values for extremum of f(x,y).
Solved Problems on Extreme Values
1. Find the minimum point of f(x,y)=x" + > +6x+12.
Given f(x,y)=x"+y> +6x+12
fe=2x+6, f, =2y
fxx:25 fy_y=2’ fxy:()
The stationary values are given by f, =0, f =0
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bﬂ:O:Qx+6:O:w=%;:—3

f,=0=>2y=0=y=0

. (=3,0) is the extreme value of f(x,y)

A=f,.=2,B=f,=0,C=f =2,
(—3,0) is a minimum point.

Find the maximum minimum of the values x*> —xy+y” —2x+y
Given functionis f(x,y)=x> —xy+y’> —2x+y

fx(x,y):Zx—y—2
fy(x,y):—x+2y+1

f.=0 f,=0
2x—y-2=0 ..(I) —x42y41=0 .2
(1)+2x(2)=3y=0

y=0

substitute y =0in (1), 2x—-2=0
x=1
(1,0) is the extreme point of f(x,y)
A= [, (x.y)=2
Here B=f (x,y) =-1
C:fyy(x,y):2

Now A=(AC-B*)=22-(-1)"=4-1=3>0 also 4>0

..(1,0) is a minimum point

- Minimum valueis f(1,0)=1"-0+0-2+0=-1

A flat circular plate is heated so that the temperature at any point (x, y) is
u=x"+2y" —x. Find the coldest point on the plates.

u=x"+2y"—x
u, =2x-1

u,=4y
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Consider
u, =0, u,=0

2x-1=0, 4y=0

X =

1
-, -0
> y

Therefore (%,OJ is the stationary point.

At the point (%,Oj

A=u _=2,C=u, =4, B=u, =0
A=AC-B*>>0

o 1 ) . . -1
u Is minimum at E,O and its minimum value is ?

Find the stationary points of the function f(x,y)=x"—)"—-3xy.

Given: f(x,y)=x" -y —3xy
f =3x"-3y & f, =-3y*-3x

Let £ =0 & Let fy =0

3x* -3y =0 ~3y*—3x =0

x’—y=0 vy +x=0

y=x" s 0)) X ==Y (2)
v =x' .03

x(x*+1)=0
x=0; x’+1=0 and x=-1
From (3) y=0, £1

The stationary points are (0,0), (-1,1)

https://doi.org/10.5281/zenodo.15288142
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Examine f(x,y)=x"+)—12x-3y+20 for its extreme values.

Therefore stationary points are (2,1), (2,-1), (-2, -1) and (-2,1)

Given f(x,y)=x"+y —12x-3y+20

f.=3x*-12
Consider f =0
3x*-12=0
x’ =4
x=12

&

R R

/ =3)"-3

f)o( = 6X f;;y = 6_)/ f,:cy:O
Point | 4=/ | B=f, =0 |C=f, | AC-B* Nature Extreme value
AC—-B*>0
3 3
21) | 1250 0 6 7250 A>0 1 2+ =12x2-3+20
Minimum
Saddle neither maximum nor
(2,-1) 12 0 -6 —72<0 point minimum
AC—-B*>0 | f(=2,-D)=
(-2,-1) | -12<0 0 -6 72>0 A<0 | 22— +12x2+3+20
Maximum
Saddle neither maximum nor
(=21) | -12 0 6 —72<0 point minimum
40\_ 7 [
30 .
W
20 \:‘53‘5‘32\\'«

https://doi.org/10.5281/zenodo.15288142
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Find the extreme values of the function f(x,y)=x"+)’-3x-12y+20.
Given: f(x,y)=x"+y> =3x—12y+20

fo(x,y)=3x> -3 f,(x»)=3y* -12

A=f.(x,y)=6x B=f(xy)=0 C=f,(x,y)=6y

To find the stationary points.

fx = 0 f;’ = O
23x2=3=0 | ~3y*—-12=0
x> =1=0 yl —4=0
The stationary points are (1,2), (1,-2), (-1,2), (-1, -2)
(1, 2) (1) _2) (_1,2) (_1r_2)
A=6x 6>0 6>0 -6<0 —-6<0
B 0 0 0 0
AC - B? 36xy 36xy 36xy 36xy
AC - B? 72>0 ~-72<0 -72<0 72>0
Conclusion | Min. point | Saddle point | Saddle point | Max. point.

Maxima value of f(x,y) is

F(=1,-2) = (=1) +(=2)’ =3(~1)—12(-2) + 20 = 38

Minimum value of f(x,y) is

f(1,2)=1) +(2) -3(1)-12(2)+20=2

Find the maxima, minima of the function f(x,y)=x"+y"-2x* +4xy-2)°

Given f(x,y)=x"+y*—2x" +4xy—2)°

f

of 9 3
f;c:§:4x3_4x+4y & fy=§=4y +4x—-4y
Of _no o'f o f
=—2 =12x* -4, = =4 = =12y" -4
fxx xz fxy axay f;; ayz y
Consider f. =0 & f,=0
X —x+y=0 & YV 4+x—y=0

Adding, we get

X —x+y+y +x—y=0
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Substitute y=—x in f =0, we get

Since y =—x, we get y:O,y:TL\/E

X—x—-x=0

X =2x=0

~. The critical points are (0,0),(v2,—v/2),(—/2,~/2)

At (—2,4/2)
A= f, =12(~2)* ~4=24-4=20>0
C=f,=12(2)"-4=24-4=20>0
B=f, =4
.. AC - B* =(20)(20)—4% =384>0
. (=2,~/2)is a point of minimum value.

The minimum value is
)= () () 23]
+4(2)(V2)-2(+2)

=4+4-4-8-4=-8

At (\2,-2)
A=f =12(2)} —4=24-4=20>0
C=f, =12(~2) -4=24-4=20>0
B=f, =4
LAC-B = f, f,, — fo =(20)(20)-4* =384 >0
. (\2,—+/2)is a point of minimum value.

The minimum value is
)=o) () ()
#4(v2)(~2)-2(~2)

—4+4-4-8—4=-8

At (0, 0)

A= [, =12(0)-4=—4<0

C=f,=12(0)-4=-4<0

B=f, =4

LAC-B = f, f, — fo =(-4)(-4) -4 =16-16=0

..(0, 0) cannot be a extreme point. Itis a saddle point.
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8. Investigate for the maxima and minima if any of the function f(x,y)=x"+)"-3xy

Given: f(x,y): x*+y’ —3xy

fx = 0 fy = O
3x* -3y =0 3> =3x=0
3x* =3y 3y®=3x
x’=y..»1) Y'=x.(2)
To find stationary points: xt—x=0
(1):> y:x2 ..... (3) x(x3—1):()
Q=y'=x .. 4 = x=0orl
G=>x'=y* L (5) Putx=0in(3), y=0
Substituting (4) in (5), we get x=1in(3), y=1
oy Therefore the stationary points are (0, 0), (1, 1)
At (0,0) At(1,1)
2
A= 0 { =6x 0 0
ox
2
Ox Oy
82
C= { =6y 0 6
%
AC-B’ -9<0 36-9=27>0
A=0 A>0
AC—-B*>0 AC—-B*>0
Result: . i
No extremum value point of maximum
The method fails value

Maximum value is f(1,1)=1*+1’-3=—1

Given

f,y)=x"y*(6-x—y)
=63y —x*y: -y

Test for maxima and minima of the function f(x,y)=x"y*(6-x-y)

A = fxx('xay) = 36xy2 _12X2y2 —6_xy3

B= \]pxy('xay) = 36x2y—8x3y_9x2y2

f.(x,y)=18x7y* —4x’y* —3x%)°

S, ()= 12x°y—2x*y—-3x’y’

C=f,(xy)= 12x° —2x*—6x’y
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To find the stationary points.

fx=0

f, =0

18x°y* —4x’y* -3x°y’ =0
x2y2(18—4x—3y):0
x=0
y=0
4x+3y =18
when x =0, y=—-6

when y:O,x=%

12x’y —2x*y -3x’y* =0
xXy(12-2x-3y)=0
x=0
y=0
2x+3y=12
when x =0, y=4
when y=0,x=6

4x+3y=18————— )

2x+3y=12————— )

(D-(2) >2x=6; x=3

Substitute in (2), 23)+3y=12;3y=6; y=2

.". The stationary points are (0,0), (0,-6), (0,4), (%,0),(6,0) ,(3,2)

(0,0) (0,—6) (%,0) (6,0) 3,2

A 0 0 0 0 ~144

B 0 0 0 0 -108

C 0 0 8019 0 -162
AC-B 0 0 3 0 11664
Decision | Inconclusive | Inconclusive | Inconclusive | Inconclusive Il)v([)?zt

Thus (3,2) is a maximum point.
.. The maximum value is £(3,2)=x")" (6—x—y) —108

10. Find the maximum and minimum values of f(x,y)=x"’+3xy’ —15x* —15y* +72x

f=x"+3xy* —15x> =15y + 72x A= f.=6x-30
f.=3x"+3y" =30x+72 C=f, =6x-30
fy:6xy—30y B:fxy:6y
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Let f =0 & f, =0
3x* +3y° =30x+72=0 6xy—-30y=0
x>+ —10x+24=0....... 1)) y(x=5)=0
y=0 or x=5

When y =0, (1) gives

When x =5, (1) gives

x*—10x+24=0 574" -10(5)+24=0
(x=6)(x—4)=0 Y =1
x=6,x=4 y==l
.. the stationary points are (4,0), (6,0), (5,1), (5,-1).
Point | A=6x-30 B=6y C=6x-30 AC - B? Nature
(4, 0) -6<0 0 -6 36>0 Maximum
(6,0) 6>0 0 6 6>0 Minimum
(5 1) 0 6 0 -36<0 Saddle
point
(5-1) 0 —6 0 -36<0 Saddle
point

The maximum value of the function f(x,y) at

(4,0)is (6,0) is

£(4,0)=x’ +3xy’ —15x*> =15y* + 72x
=64-240+288

=112 =108

11.  Discuss the maxima and minima of f(x,y)=x"y’(1-x—y).

Given f(x,y)=x"y*(1-x—y)
=Pyt —xt o ity
— 222 52 A3 12 22 3 _ A3 4
So(x,y)=3x"y " —4x" y" =3x"y C=f,(xy)=2x"-2x

foxy)=2x" y—2x* y=3x* »°

https://doi.org/10.5281/zenodo.15288142

B:fxy(x,y):6x2y—8x3y—9x2y2

—6x°y

The minimum value of the function f(x,y) at

£(6,0)=x" +3xy’> —15x> —=15y” + 72x
=216—-540+432

A= f (x,y)=6xy’> —12x* y* —6xy’
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To find the stationary points.

". The stationary points are (0,0), [%_

/. =0

f, =0

3x% y* —4x’ y* =3x°

x?y’[3-4x-3y]=

y =0

2x’ y—2x*y-3x’ > =0

x*y[2-2x-3y]=

x=0 v=0
y=0 y=0
4x+3y=3 2x+3y=2
when x =0, y =1 D)
3 when x =0, y=—
when y=0, x=— 3
4 when y =0, x =1
4x+3y =3 ...(D
2x+3y=2 ..(2)
DH-2)= 2x=1, x=—
DH-2x2)=> -3y=-1; y=

W | —
S W |

11 2 3
0,0 -, = 0,1 0,= =,0 1,0
(0.0) [23j .1 (3j (4j (1,0)
—l<0
A 0 9 0 0 0 0
1
-— 27
B 0 D 0 0 =l 0
| 128
C 0 S 0 0 0 0
8
AC-B? 0 1o 0 0 0 0
144
. Max. . . . .
Inconclusive point Inconclusive | Inconclusive | Inconclusive | Inconclusive
Thus (%,%) is a maximum point.
11 VOV 11 1
Th 1 X —.— | = — — 1_ —_—— | = —
e maximum value f(x,y)= f(z 3j (2] (3) [ 5 J 132
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12. Discuss the maxima and minima of f(x,y)=x+xy+ )’ + L

Given: f(x’y) = x2 -|—xy+y2 +l+_
X

Differentiate partially w.r.t x and y.

Xy

A:fm:2+£3
X

B=f, =1

2
C:f;/y:2+?

Equating f, =0and f, =0 to find the

stationary points
2x+y—L2 =0....(1
x
1
2y+x——=0..(2)
y
Subtracting (1) & (2)

2x+y—i2—2y—x+i2=0.
X y

1 1
xX—y——+—5=0
y x2 y2
x—y+iz—i2:0.

X

2 2

X -y
xX—y+ 0

y x2y2

x2y2(x—y)+x2—y2 =0

0

x’y’ (x—y)+(x—y)(x+y)

x*y* (x—y)+(x—y)(x+y):0

1)3
Since x = y, the stationary point is (gj , (

(x—y)(x2y2 +x+y)=0

(x—y)zO or (xzy2 +x+y):0
consider(x—y)=0 =x=y (3)
Substitute (3) in (1)

2y+y—L2=O
y
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1
56
At 3 ’ 3
2
) ¥ l
5
B=f, =1 B=1
2
C:f;}y:2+—3 C:2+£=8
Yy -
3
AC-B* 64-1=63>0

Since AC—B*>>0 & A>0, f(x,y) has minimum at GT ,(—f}

1 1 2 1 1
1V (1) 1)3 131y (1 1 1
The minimum value of f||—=| ,| = = —j +(— —] nl ol T 1
3 3 3 3 3 3 1) 1)

W | =
—

=3 é + 2(3)5
~(3) +2(3)
= 3(3)%

- (3)s

1 % 1 % 4
The minimum value of f 33 =33
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Constrained Maxima and Minima

Sometimes we need to find the extremum of f(x,y,z)=0 subject to a condition of @(x,y,z)=0.
The extremum in such case is said to be constrained maxima and minima.

Now one variable, say z, may be obtained from ¢(x,y,z)=0 and it may be substituted in
f(x,y,z)=0. The resulting function is a function of two variables and the usual method can be
applied to find the extremum values. If this is complicated we can apply the following method.

Lagrange’s Method

Suppose we need to find the extremum of f(x,y,z)=0 subject to a condition of ¢(x,y,z)=0.
Working Rule:

1. Write the auxiliary function g = f + 1¢, where A is the Lagrange multiplier.
2. Differentiate partially g w.r.t. x, y, z and 14

3. Solve the equations g =0, g =0, g. =0, and g, =0 to get the stationary points.

y
4. At this stationary point, extremum exists.

Note: Lagrange’s method does not indicate whether the extremum is maxima or minima. It is
decided by the physical condition of the problem.

1. Divide 24 into three parts such that the continued product of the first, square of
the second and cube of the third may be maximum.

Let x, y, z be the three parts of the number 24. Then x+ y+z =24.
Now we have to maximize f(x, y, z) = xy’z’ subject to the condition
d(x,y,z)=x+y+z—-24.
Consider the auxiliary function g = f(x, y, z)+ Ad(x, y,z)

g =(xyzz3)+l(x+y+z—24)
Differentiate g w.r.t. x, y, z,4, we get

g. = (y2z3 ) + A

g, = (2xyz3 ) +A

g. = (3xy222 ) +A

g, =x+y+z-24

Consider g, =g, =g.=g,=0,we get
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yz =2xz=3xy
1.2 3.1
x y z k

ie. x=k, y=2k, z=3k

Substitute these values in (4)
k+2k+3k =24

6k =24
k=4

Therefore x=4 y=8, z=12

2. Find the minimum distance from the origin to the surface z> =1+xy.

Let P(x, y, z) be a point on the curve. The distance from the origin to this point is

d =\[(x=0) +(y=0)’+(y=0)’
d*=(x=0)"+(y-0)* +(y-0)’
Let f(x,y,2)=x"+y" +2°
Now we have to maximize f subject to the curve z* = xy +1
Therefore
[, y,2)=x"+y +2=x"+y +xy+1
fO,y)=x>+y +xp+1
Differentiate f w.r.t x, y , we get
f.=2x+y
S, =2y+x

Solving f. =0and f,=0,we have
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Subtracting, x—y=0 ie. x=y

From (1), 3x=0, i.e. x=0 and hence y=0 and hence (0,0) is the stationary point.

=
|| ||

soat (0,0) A=/, =2, B=f =1, C=f =2
Also A=AC-B*=4-1=3>0 and A=2>0
Hence f has minimumat x=0 & y=0

But z* =1+xygives z° =1 and z==1.

Therefore the required points on the surfaces which gives the minimum distances are

A(0,0,1) and B(0,0,—1).

Another Method:
Consider the auxiliary function g = f(x, y, z) + Ad(x, y,z)

g=(x2+y2+zz)+ﬂ,(zz—xy—l)

Differentiate g w.r.t. x, y, z and 1, we get Consider g, =g, =g, =g, =0, we get
<= (22)+4(=) 0=(2x)+A(-y) e a=2x
Y
=(2
( y) ( ) 0:(2)’)4‘2(—)6) ie. /I:Z_y
=(2 A(2 X
. =(22)+4(2z) 0=(22)+A(2z) e  A=-1
(ZZ_X)/ ) Oz(zz_xy_l) ie. Zz=xy+1
Equating, the first two, 2x — 2y
y X
2x% =2y°
X' =y
X=Y
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S 2x—=Ax=0

ie. x=0 and y=0

Since z* =1+xy, z° =1, z=%1

Hence the stationary points are A4(0,0,1) and B(0,0,—1)

A rectangular box open at the top, is to have a capacity of 108 cu.ms. Find the

dimensions of the box requiring the least material for its construction.

Let x, y, z be the length, breadth and
height of the box.

Surface area = xy +2yz+2xz

(should be minimum)

Volume = xyz =108

Let the auxiliary function F be

F(x,y,z)=(xy+2yz +2zx) + A(xyz—108)
Where A is Lagrange multiplier.

Differentiate ' w.rt. x, y, z, we get

F is extremum when

Fx:O:>y+2Z+/1yZ:O:>l+g:—/l .(2)
oF z y
Fx:a—=y+22+/1yz; 1 2
a; F,=0=x+2z+xz=0=—+-=-1 .(3)
F =—=x+2z+ Axz; z X
oy 2 2
oOF F =0=22x+2z+Axy=0=>—+—=-41 .(4)
F =5 cox+2y+Axy yox
oz
Equating first two, Equating the last two, Therefore, we getx =y = 2z
we get we get But Volume is xyz =108
l+2:l+g l+2:2+% (2z)(2z)z =108
z 'y z X z X Yy x
4z° =108
2.2 1.2
y X z Yy 23:%:27
4
xX=y y=2z 7 =3
Sox=6, y=6, z=3

Cost is minimum whenx =6,y =6,z = 3.

Thus the dimensions of the box are 6, 6, 3.
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4. Find the dimensions of the rectangular box open at the top of maximum capacity
whose surface area is 432 sq cm.

Let x, y, z be the length, breadth and height of

the box.

Given Surface area xy+2yz +2xz =432

Volume V' = xyz (should be maximum)

Let the auxiliary function F be

F=xyz+ A(xy+2yz+2xz—-432)

Where A is Lagrange multiplier.

Differentiate F© w.r.t.
F =yz+ A(y+2z2)
F,=xz+A(x+2z)

F =xy+A(2y+2x)

From the first
two, we have

1 2 1 2

—t—=—4—

z 'y z X
2.2
y X
xX=y

x,y, z,we get

From the last two,
we have
1 2 2 2
—_—t =4 —
z X Yy X
1_2
z y
y=2z

Sx=12,y=12,z=6

Height

y

WidtL\A

X

A J

A

Length

Consider F,=F,=F,=0

ie. —

0=yz+A(y+22)

O=xz+A(x+2z) ie -

0=xy+A2y+2x) ie. —z:

Soweget x=y=2z

But surface area xy+2yz+2xz =432

2z2z4+22zz+2.2z.z=432

122> =432
z2 =36
z=6

.. Max volume =12 x12x 6 = 864 units

https://doi.org/10.5281/zenodo.15288142

l=y+2z=l+z
yz z Yy
l_x+2z_l z
Xz z X
I _2y+2x 2 2
Xy Xy
215|Page



5. Find the maximum value of x"y"z”,when x+y+z=a.

Let f=x"y"z" and g=x+y+z—a
Therefore the auxiliary functionis g = f+ A¢=x")y" z” + /1(x +y+z-— a)

The maximum values existsat g. =g, =g.=g,=0

g. =0, g, =0, g. =0, g,=0
mxm_ly”2p+ﬂ,:O nxmy"_lzp+ﬁ:O px’"y"zp_l+2,:O x+y+z—a=0
mx" 'y zP =—2 nx"y"'z? =—A4 px"y'zP =4 Xty+z=a

From the above
1 1 _
—A=mx"" y"zP =nx"y" 2" = px"y"z"

Divide by x"y"z”

p_mtnt+tp _mtn+p

. n
le., —
Yy z x+y+z a

m
X

Equating each ratio with the last ratio, we have

am an a
X=—,y= , Z = D

» ¥y =
m+n+p m+n+p m+n+p

Max. Value f =x"y"z”

am+n+pmmnnpp
f: m+n+p
(m+n+p)
6. Find the volume of the greatest rectangular parallelepiped inscribed in the

2 2 2
ellipsoid whose equation is x_2 + y_z + Z—z =1
a b c
Let a vertex of such parallelepiped by (x, y, z)

Then all other vertices will be (£ x,+ y,£z)

Then the sides of the solid be 2x, 2y, 2z (lengths)
Hence, the volume V = (2x) (2y) (2z) = 8xyz

2 2

2
Now, we have to maximize V subject to the condition ¢(x, y,z) = x_2 + Z—Z + 2_2 -1=0
a c
x2 y2 ZZ
Let F=f+/1¢=8xyz+ﬂ —2+—2+—2—1
a- b” ¢
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Differentiate F w.rit. x, y, z and equate to 0, we have

oF 2xA oF 2yA oF 2zA
—=0= 8yz+—=0 —=0= 8xz+ =0 —=0= 8xy+ =0
Ox > a’ oy b* Oz 4 c?
2x*A 2y°A 2z°A
8xyz =— e 8xyz = — Zz 8xyz = - pe
Equating all the ratios,
2X°A  2y°A 224
a’ B b* B c?
2 y2 ZZ
P )
LA S S S G
2 2 2 2 2
e, @b _at b L
1 1 1 3 3
3 J3 3 3 3 J3

The extremum point is (i b Lj
NERNERNE
This will not give minimum V because when x = 0 , V = 0 when the solid becomes a

rectangular sheet.  Hence, this gives only maximum value.

Maximum volume is V' =2x.2y.2z
abc
V=8 ——

[%E j

7. A rectangular box open at the top, is to have a volume of 32cc. Find the dimensions
of the box which requires least material for its construction.

Let x, y, z be the length, breadth and
height of the box.

Surface area = xy +2yz+ 2xz (minimised) Z

Volume = xyz =32

Let the auxiliary function F be

F=(xy+2yz+2xz)+ A(xyz —32) y
Where A is lagrange multiplier.

217 |Page
https://doi.org/10.5281/zenodo.15288142



Differentiate ¥ w.rt. x, y, z, we get

F is extremum when

1 2
F =0=>y+2z4+Az=0=>—+—=-41 .(2)
oF z oy
F. =—=y+2z+ Ayz; L 2
gl’; F,=0ox+2z4 z=0=—+2=—-4  .(3)
F,=—=x+2z+ Axz; 22 x2
oOF F =0=22x+2z+Axy=0=>—+—=-4 ..(4)
F =—=2x+2y+ Axy yox
0z
Equating first two, Equating the last two, Therefore, we getx =y = 2z
t t
weee wege But Volume = xyz = 32
1 2 1 2 1 2 2
—+—=—+— —+—=— 2z2zz=32
z y z X z x Yy
4z° =32
2.2 1.2
y x z y =8
z=2
x=y y=2z
x=4,y=4,z=2
.. Material is minimum when the dimensions of the box are 4, 4, 2.
Using Lagrange’s method, find the maximum of value of
x> +y> +z° when x+y+z=3a.
Given f=x"+y>+z> and $=x+y+z-3a.
Consider the lagrange’s equation g = f + 4¢
g :(xz +y° +22)+/1(x+y+z—3a)
Differentiate ‘g’ w.r.t x, y, z and A, and equate to 0. We get
g. =2x+4 g,=2y+4 g.=2z+4 g, =x+y+z-3a
g. =0 gives g, =0 gives g, =0 gives g, =0 gives
2x+A=0 2y+4=0 2z+4=0 X+y+z=3a
2x=-1 2y=-4 2z=-4
Equating, we have 2x=2y =2z je. x=y=z.
But x+y+z=3a gives 3x=3a ie.x=a and hence y=a, z=a.
Therefore f has maximum at (a,a,a) and the maximum valueis f =a’ +a’ +a’=3a’
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Exercise

1 Find the possible extreme point of f(x,y)=x"+)" +%+g.
Xy

2 Examine the following functions for extreme values
() X’y-3x>-2y*—4y-3 (ii) x*+x’y+y* at(0,0)
Find the maximum and minimum values of f(x, y)=sinxsin ysin(x+y); 0<x,y < 7.

Show that, if the perimeter of a triangle is constant, its area is maximum when it is equilateral.

In a triangle ABC, find the maximum value of cos Acos BcosC

S U1 B~ W

Find the shortest and longest distances from the point (1,2,-1) to the sphere x° + y* +z* =24

7 Prove that the rectangular solid of maximum volume which can be inscribed in a sphere is a

cube.

8 Find the minimum value of x> + y* + z*> when ax+by+cz = p.
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UNIT IV - INTEGRAL CALCULUS

Introduction to Definite Integral

Consider the area R bounded by the X— axis, the [ 4

line x=2 and the curve f(x)= X’ and the area of Ro .
Since R and R, together comprise a triangle, whose

area is lbh = 12_4 =4. Ry ()=
2 2

Hence finding the area of R is equivalent to finding ” >
X=

the area of R,.

Suppose we inscribe rectangles in the region R as shown in (4) and (B) . Obviously the sum
of areas of the rectangles is less than the area of R. If the width of the rectangles becomes
smaller and smaller the sum of area of rectangles approaches the area of R. Thus the area of

R is defined as a limit of the sum of areas of inscribed rectangles.
y y

fe)=x' F)=

(A) (B)
Consider a region bounded by a graph of non negative continuous function f on [a,b], X—

axis, the line x x=a and x=b. For any positive integer ! divide [a,b] into subintervals by

introducing points of sub division @ =X; , X; , Xy yoee Xy 5 Xy 500X b= X, . For each k between 1
and ! the rectangle Rk has base [xk_l,xk] with length Axk =X, —X;_; and has a height ;. Hence
the area of R, is M, AX, . Hence sum of all rectangles is M,AX, +m,AX, +....+ mAX, +....+m Ax .

Note: Ax, +Ax, +...+Ax, +.....+Ax =b-a
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_ - - : G - _
a=x ! X2 X1 = X1 b=x,

et

Definition: Let s be continuous on [a,b] . The definite integral of s from gt b is

Example: Let f(x)=c for a<x<b . Show that y

b

j cdx=c(b—a) f)=c
a Ic

Since f assumes only the value c¢, for any partition

A=Xg 5 Xy s Xy seeeeXyp s Xy Xy g ’b:xn of [a,b] and X
for any k between 1 and /I, we have 0 a b
m=m,..=m =..=m =c, Area=c(b-a)

I cdx=c(b—a)

a

DEFINITION OF A DEFINITE INTEGRAL (Riemann Integral (Integral as limit of sum)
If f is a function defined for a < x < b, we divide the interval [a, b] into n subintervals of equal
width Ax = (b — a)/n.

We let xo(= a) , x1,x2, ..., x,(= D) be the endpoints of these subintervals and we let x3,x5, ...,
Xy, be any sample points in these subintervals, so x; lies in the i th subinterval [x;_1, x;]. Then

the definite integral of f from a to b is

b n
f £ ()dx = lim Z () Ax
a e
provided that this limit exists. This sum is called Riemann sum of f(x) corresponding to the
partition. The integral is called Riemann integral of f(x) on [a,b]. Also for the same partition
there are many ways to choose x; in the sub interval (xl;1 ,xi).

Note
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b n
1. If(x) dx = Lt Z S (x.)(x; —x,_,) is known as left end rule for evaluating Riemann integral.
n -
b
2. J.f(x) dx = Z f x —X, l) is known as right end rule for evaluating Riemann integral.

b
3. If(X) d— Z f(x +x,_ j X, —XH) is known as mid point rule for evaluating RI.

Note 1: The symbol dx simply indicates that the independent variable is x. The procedure of
calculating an integral is called integration.

Note 2: The definite integral f: f (x)dx is a number; it does not depend on x. In fact, we could
use any letter in place of x without changing the value of the integral:

fabf(x)dx=fabf(t)dt=fabf(r)dr

Note 3: If f is continuous on [a, b], or if f has only a finite number of discontinuities, then f is

integrable on [a, b]; that is, the definite integral f; f (x)dx exists.

Theorem: If f is integrable on [a, b], then

f f(x)dx = hm Y. f (x)Ax where Ax = bTand X;=a+idx

Example: Express lim " ,(x} + x; sin x;)Ax as an integral on the interval [0, 7r].

Comparing the given limit with the limit in above Theorem , we see that
f(x)=x3+xsinx and a=0,b = .

Therefore, 11m Y (%3 + x; sinx)Ax = fo (x3 + x sin x)dx

3
Example : Evaluate |x’-6x dx using the Riemann sum corresponding to 6 sub intervals
p 8 g
0

of equal length and applying (a) left end rule (b) right end rule.

(a) Here a=0, b=3, n=6, f(x)=6X—X3 and interval width is Ax = bn;a = 3;—0 = %
The left end points are x; =0,x, =0.5, x3=1, x4, =15, x5=2, and x¢ =2.5. So the

Riemann sum is

=1
Rs =) f(x)ax
i=1
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= f(0)Ax + f(0.5)4Ax + f(1.0)Ax + f(1.5)4x + f(2.0)4x + f(2.5)4Ax
= %(D — 2.875 — 5 — 5.625 — 4 + 0.625)

= —8.43375

(b) The right end points are x; = 0.5,x, = 1.0,x3 = 1.5,x4 = 2.0, x5 = 2.5, and x¢ = 3.0. So the

Riemann sum is

=1
Rs =) f(x)ax
i=1

= £(0.5)4x + f(1.0)Ax + f(1.5)Ax + f(2.0)Ax + f(2.5)Ax + f(3.0)Ax

1
=5 (~2.875-5-5625-4+0625+9)

= —3.9375
Notice that f is not a positive function and so the Riemann sum does not represent a sum of
areas of rectangles. But it does represent the sum of the areas of the rectangles (above the x-
axis) minus the sum of the areas of the rectangles (below the x-axis) .

Example : Use the Midpoint Rule with n = 5 to approximate flzidx.

The endpoints of the five subintervals are 1, 1.2, 1.4, 1.6, 1.8, and 2.0, so the midpoints are 1.1,
1.3, 1.5, 1.7, and 1.9. The width of the subintervals is
2—-1 1
=——=3

so the Midpoint Rule gives
YA

2
f %dx = Ax[f(1.1) + £(1.3) + F(1.5) + F(1.7) + f(1.9)]
1
_ 171 1 1 1 1
—ﬂﬁ+ﬁ+ﬁ+ﬁ+ﬁ)

= 0.691908

Since f(x) = 1/x > 0 for 1 < x < 2, the integral represents an area, and the approximation

given by the Midpoint Rule is the sum of the areas of the rectangles.
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EVALUATING INTEGRALS (As a limit of the sum):
When we use a limit to evaluate a definite integral we need to know how to work with sums.

The following equations give formulas for sums of powers of positive integers.

b 9 2

ani=w' iizzn(n+l)(2n+l)_ ii3={n(n+l)}2
i=l 2 i=1 6 ar)

S K = nk; Ska,=KYa:  Y(ah)=Y ()Y (b)
i=1 i=1 =1 ' : ~

Evaluate fog( x3 — 6x)dx as the limit of the sum.

With n subintervals we have
b—a 3

Ax =
n n

Thus xy = 0,x1 = 3/n,x, = 6/n,x3 = 9/n, and, in general, x; = 3i/n. Since we are

using right endpoints,

[ =ome= Y sas = > () )
i=1 i=1
_ T}E&nzl 31 31 l

- —Z[—() -2 )}

n—)wl’l,l

Lt 3273 Lt 318
PO NOE

T noonn’ n—>onn ‘g

_ Lt g{n(rz+l)}2_ Lt 54 n(n+1)

n—on' 2 n—> oo n? 2
Lt 81(. 1Y Lt 54 1

= —1+—| - — | 1+-
n— o 4 n n—ow 2 n
8154 65

4 2

This integral can’t be interpreted as an area because f takes on both positive and negative

values. But it can be interpreted as the difference of areas A; — A,, where A; and A,
3
f (x3 —6x)dx =A; — A, = —6.75
0
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Note: An area whose boundary is described in
the anti-clockwise direction is considered
positive area and an area whose boundary is Ve area
described in the clockwise direction is taken as T

negative.

. 3 ..
Example: Setup an expression for fl e* dx as a limit of sums.

Here we have f(x) = eX,a = 1,b = 3,and Ax :b%a:

SN

YA

0 ) 3 x
Soxg=1,x1=1+2/nx,=1+4/n,x3=1+6/n, and x;=1+>

We get,

3 n
f e*dx = lim Zf (x;)Ax

PROPERTIES OF THE DEFINITE INTEGRAL

L[ f (dx = — [0 f (x)dx
2.[1f (x)dx =0

https://doi.org/10.5281/zenodo.15288161
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3.J, cdx = c(b — a), where ¢ is any constant

4 [1f(0) + g@)ldx = [, f (x)dx + [ g (x)dx
5./, c f(x)dx = ¢ [, f (x)dx, where ¢ is any constant
6. [, [f(x) — g(0)]dx = [, f (x)dx — [, g (x)dx

7. f;f(x)dx + fbcf (x)dx = facf(x)dx where a<b <c

8. jf(x) dx=jf(a—x) dx
0 0
Proof: Put X=d—Z Then dx=-dz

When x=0, z=a and when x=a, z=0.

Therefore

jf(x) dxz—])‘f(a—z) dz

S ey O e

fla—2z) dz

f(a—x) dx

9. [ S dv=2[f(x)dx if f2a=x)=f(x)

Proof: We know that

24 a 24 In the second integral of RHS
[ 1o de=[reode+ [ £ dr Put x=2a-z. Then dv=—dz
0 0 a
0
= [ (%) dx - jf(Za—z) d= When x=a, z=a and when
a x=2a,z=0.

O ) O D

f(x) dx + jff(2a—z) dz

a

f(x) dx + ]if(2a—x) dx

O D O ey

f(x) dx + jf(x) dx Since f(2a—x)= f(x)
0
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= 2jf(x) dx

COMPARISON PROPERTIES OF THE INTEGRAL

10.1f f(x) = 0 for a < x < b, then [ f (x)dx > 0.

11.1f f(x) = g(x) fora < x < b, then [, f (x)dx > [} g (x)dx.
12.Ifm< f(x) <M for a<x<b,then

m(b—a) < fbf (x)dx < M((b —a)
Example : )
Use the properties of integrals to evaluate fol( 4 + 3x%)dx.

Using Properties 4 and 5 of integrals, we have

1 1 1 1 1
f (4+3x2)dx=f 4dx+f 3x2dx=f 4dx+3f x%dx
0 0 0 0 0

—443.2=5
3
Example: If [ f (x)dx = 17 and [ f (x)dx = 12, find [ f (x)dx.

We have

jjf (x)dx + fglof (x)dx = j:of (x)dx

sof; f ()dx =[] f ()dx— [ f (x)dx =17 =12 =5

THE FUNDAMENTAL THEOREM OF CALCULUS- 1
If f is continuous on [a, b], then the function g defined by

g(x):fxf(t)dt a<x<bh

is continuous on [a, b] and differentiable on (a,b) , and g'(x) = f(x) .

Example:Find the derivative of the function g(x) = foxv 1+ t2dt.

Sol: Since f(t) = V1 + t? is continuous, Part 1 of the Fundamental Theorem of Calculus gives

g (x) =v1+x2

Example: Find ifx4 sec tdt
ple: — I :
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Letu = x*. Then
4

d * d
a.’; sectdt=af sec tdt

1
_d f“ e du
Cdull, Se¢ dx
du

= secu—
dx

= sec (x*) - 4x3

THE FUNDAMENTAL THEOREM OF CALCULUS-2
If f is continuous on [a, b], then

b
[ 7o =r - F@
a
where F is any antiderivative of f, that is, a function such that F = f.
Example: Evaluate the integral [ 13 e* dx.

The function f(x) = e* is continuous everywhere and we know that an anti- derivative is
F(x) = e”*, so Part 2 of the Fundamental Theorem gives

3
f e*dx =F(3)—F(1)=e3—e

Example: Find the area under the parabolay = x2 from 0 to 1.
An antiderivative of f(x) = x? is F(x) = §x3. The required area 4 is found using Part 2 of the

Fundamental Theorem:

1 1 13 03 1
Azfxzdxz— == ——===
0 0

3
Evaluate I x—1dx by interpreting in terms of the

y=x-1
0
area. (32)
/ (1,0) (30)
=3
Ao .
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This is the area bounded by the line y = x—1, x —axis
and the line x=3.

Example: Find the area under the cosine curve from 0 to b, where 0 < b < /2.

Since an antiderivative of f(x) = cos x is F(x) = sin x, we have

b ¥
A= f cos xdx = [sinx]} 1]
0
= sin b— sin0
= sinb

=Y

In particular, taking b = /2, we have proved
that the area under the cosine curve
from 0 tom/2is sin (/2) = 1.

Example : What is wrong with the following calculation?

3 1 x—l
f —dx= |

2 —
1 X 1

we notice that this calculation must be wrong because the answer is negative but f(x) =
1/x? > 0 and Property 6 of integrals says that f(ff (x)dx = 0 when f > 0. The Fundamental
Theorem of Calculus applies to continuous functions. It can’t be applied here because f(x) =
1/x?% is not continuous on [-1, 3]. In fact, f has an infinite discontinuity at x = 0, sofflxizdx
does not exist

Solved Problems for Indefinite Integrals
1. Find the general indefinite integral [(10x* — 2sec?x)dx

J( 10x* — 2sec?x)dx = 10 J x*dx —2 j sec? xdx

XS
= 10?—2tanx+C

=2x5—-2tanx+C

cos 6
sinZ20

2. Evaluate/ de.
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J‘cos@de_f 1 COSQdQ
sin26 - sin @ sin @
= f cosec O cot 8d@ = — cosec 8 + C

3. I xtsinx
I+cosx
. X X
X +sinx x+2 St C0s sin2x=2sinxcosx, cos?x =% (1+cos2x)
I dx :J . dx
I+cosx 2cos? X
1 X X
= Ej.xsec2 5 dx + .ftangdx In the first integral
. 1 L, x
J‘Hsmxdx:x.tanf—jtanz a’x+jtanE dx | Letu=x, v 505 dx
l+cosx 2 2 2
du=dx, v= tanE
= anE usin g integration by parts,
THE SUBSTITUTION RULE

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on 1,
then

[weng' @ dx = [ du

Example: Find [ x3cos (x* + 2)dx.
We make the substitution u = x* + 2 because its differential is du = 4x3dx, which, apart from

the constant factor 4, occurs in the integral. Thus, using x3dx = du/4 and the Substitution Rule,
we have

1 1
Jx3 cos (x4+2)dx=fcosu-zdu=zjcosudu

=} sinu+C
=lsin(x*+2)+C

Example: Evaluate [ v2x + 1dx.

Letu = 2x + 1. Then du = 2dx, so dx = du/2. Thus the Substitution Rule gives

du
f\/2x+1dx.=f\/ﬂdx.7
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1
§(2x +1)32+C
. X
Example: Find [ —dx.

Letu = 1 — 4x2%. Then du = —8xdx, so xdx = —8du and

3 —du

| sl @

—%f w2 du

—s VW) +C

=—VI-ax?+C
Example Find [ V1 + x2 x5dx.

An appropriate substitution becomes more obvious if we factor x° as x* - x.

Letu = 1 + x2. Then du = 2xdx, so xdx = du/2.

Alsox? =u—1,s0x* = (u—1)%

JV1+x2x%dx = [V1+x2x* - xdx

= %f(uS/z —2u¥/? + u'/?)du
12 2 2

— (= 7/2_2._ 5/2 ~.,,3/2 C
2(7u Su +3u )+

1 2 1
=1+ x2)7/? -1+ x2)5/2 4 3+ x3)32 4+ ¢
Evaluate I:_[ al
X2

d
—1)\/x2+1 )

Evaluate / :I !

—d
(l—xz)\/xz—i-l )
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et \/2—_ Putx:l, then dxz—izdy
x +l=z % y
X +1=z7 [2_,[ 1 dy
x'=z"-1 2 1 1
y 1—72 1+72
2xdx=2z dz Y y
Yy
I = dx =-
I \/x m I(yz—l)Jyz+1
:Iﬁ dz By the previous example, we have
o og V2! -2
== 2\/_ P +1+42
Izz_(ﬁ)z \/
1 -2 1 5
=—=lo 4/—+ -2
Zﬁ gz+\/_ :—Z\I/EIOg xlz
1 \/x +1-+2 \/2+1+\/§
2\/_ 1
\/x +2 1 \/x +1-xV2
2\/_ \/x +1+X\/_

THE SUBSTITUTION RULE FOR DEFINITE INTEGRALS

If g’ is continuous on[a, b] and f is continuous on the range of u = g(x)
b g(b)
[ reegwa= | f
a g(a)

Example: Evaluate f04 V2x + 1dx.

We have u = 2x + 1 and dx = du/2. To find the new limits of integration.
whenx =0, u=2(0)+1=1andwhenx =4, u=2(4)+1=9

Therefore f04 V2x + 1dx = ff%\/ﬂdu
= 1.21,32)
203 [u ]1

-1

26

Example: Evaluate [ N dsx =
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Let u = 3 — 5x. Then du = —5dx, sodx = —du/5.
Whenx =1, u =—-2and when= 2, u = —7. Thus

fz d« 1 (77du
, 3-5x)%2 5], u?
-3l
50 ul,
1 1+1 1
=57t =
Example: Calculate [ f % dx.
letu = Inx. Then du =dx/x.
Whenx=1,u=In1=0; whenx=e,u= lne=1.
Thus
YA
0.5t _ Inx
€lnx L Y=
f —dx=f udu —
1 X 0

RATIONALIZING SUBSTITUTIONS

Some non rational functions can be changed into rational functions by means of appropriate
substitutions. In particular, when an integrand contains an expression of the form %/g(x), then
the substitution u = W may be effective. Other instances appear in the exercises.

Vx+4

X

dx.

Example: Evaluate [

Letu = Vx + 4. Thenu? = x + 4, so x = u? — 4 and dx = 2udu.

Therefore
Vx + 4
J dx = f 2udu
x uz—4
=2 f L
N uz—4 U

—2](1+ 4 )d
N uz —4 u

https://doi.org/10.5281/zenodo.15288161
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du
uz —4
1 u-—2

=2 1
ut8- o= Inl—

=2 du+8f

|+ C

=2\/x+4+21n|FVi:;§|+C

INTEGRALS OF SYMMETRIC FUNCTIONS

Suppose f is continuous on [—a, a].

(@) If f is even [f(—x) = f(x)], then [° f (x)dx = 2 [, f (x)dx.

(b) If fisodd [f(—x) = —f(x)], then f_aaf (x)dx = 0.

INTEGRATION BY PARTS: When integration by substitution is not possible, this method will

be useful.
Formula for indefinite integrals Formula for definite integrals
b b
b
fudv=uv—[vdu I”dv:[”"]a_j vadu
Solved Problems
1. Evaluate by using integration by 2. Evaluate by using integration by
t 4x d 1
par SJ. e @ partsJ. xe** dx
-1
Let
u=x and dv=e" dx Let
u=x and dv=e" dx
4x
du=dx and v="% i
du=dx and v=%
4
4x 4x
Ixe4xdx:xe —.[ ¢ dx | _ IR
4 4 ax e4a e4x
R Ixe dx:x4 —J- 4dx
=X ——I et dx -1 R
4 4 4 4 4x !
e4x 1 e4¥ _ e_+€_ _l
= - 4 4| 4] 4
4 4 4 - -
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3. Evaluate j xvx+1 dx using

integration by parts.

Let

dv=+x+1dx

u=x and

3

2 2
—(x+1)2
;D

du=dx and v

3 3
I xvx+1 dxzx.%(x+l)2—J %(x+l)2dx
5
2 22 (x+1)?
=x.—(x+1)?—-=
x3(x ) 3

2

3 5

—zx(xvtl)E —E(erl)E +c

5. Find [ x sin xdx.
By Integration by parts, we have
J.x.sinx dx = uv—_[vdu
= x(—cosx) —I—cosx dx

=—XCOoSXx+Sinx-+c

6. Find [ Inx dx.

By Integration by parts, we have

e et e et
4 4| 4|4 4

4. Evaluate J' xvx+1 dx using

substitution method.

Let u=x+1, x=u-1 and dx=du
J. xx+1 dx=I (u—l)\/; du

1
:_[ (u—-Du? du

3 1
=I u?—u? du

|
‘U]| :N\u-
|
N ‘ UJ| :N\w

5 3

(x+1)5—§(x+1)5 +c

SIS

Let

u=x and dv=sinxdx

du=dx and v=-—cosx

Let

https://doi.org/10.5281/zenodo.15288161
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jlnx dx = uv—-[vdu

= x.lnx—jx.l dx
X

=xlnx—x+c¢
7. Evaluate: J. xsinfcosfcosxdx
2 2
1 .oX x
I:—Jx 2sin —cos— |cos xdx
2 2 2

1 )
= —_[xsmxcosx dx
2

1
2x2

Ix(2sinxcosx) dx
1 )
=Z.|.x.sm2x dx

= l[—lx.cosbc—_[—lcost dx}
4| 2 2

1] 1
=—| ——Xx.co82x+
4{ 2 2x2

sin 2x}

= —lxcos2x+isin2x
8 16

8. Evaluate I x’\/x’ +1 dx using integration by

parts.

Let

dv=x’x>+1 dx

and

du=3x*dx and dv:é x3+1d(x3)

y= 323(x3+1)§

I N+l de=x’ z()c3+l)z—j z()c3+1)2 3x? dx
S 5 .

and dv=dx

u=Ilnx

du:ldx and v=x
X

Let
uU=x and dv=sin2x dx
du=dx and y= —%cos 2x

sin2x =2sin xcosx

9. Evaluate J. e* cosx dx using

integration by parts.

Let

U =COSX and dv=e'dx

X

du =—sinxdx and v=e
j e cosxdx=¢e" cosx+jex sin x dx

Let

u=sinx and dv=e'dx

X

du =cosxdx and v=e
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10. Evaluate: Ixsin3 x dx
= J‘xsin3 x dx

—J. [ (3sinx— sm3x)}dx

= EJ‘xsinx dx—ljxsin3x dx
4 4

j e cosx dx=e"cosx+
e’ sinx—'[e’“ cos xdx

2‘[ e cosx dx=e"cosx+e sinx

1 .
I e’ cosx dx:zex(cosx+smx)+c

Let
u=x and dv=sinxdx

du=dx and v=-—cosx

Let
U=x & dv=sin3x dx

zé[x(—cosx)—j—cosxdx]—l{x(—lcoﬂx}—f—lcoﬂxdx} du=dx & v:—lcos3x
4 4 3 3 3

) 1] x 1.
= —[—xcosx+smx]—— ——cos3x+—sin3x
4] 3 9

= %[—3xcosx+3sinx+§xcos3x—lsin3x}

11. Evaluate: J'xtanzx dx

1= xsecxl

2
X
= xtanx—J-tanx dx}—?

J<(
Ixsec X dx— dex
[

2
= [xtanx—(—logcosx)]—x?

xZ
=xtanx+logcosx—?

Let
u=x and dv=sec’x dx

du=dx and v=tanx

1+tan” x =sec’ x
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12. Evaluate: jxcotzx dx

1= J.x(coseczx—l) dx

= J.xcoseczx dx—J.x dx

= [—xcotx—f—cotx a?x]—%2

2
[—xcotx+ (logsinx)|— %

. x2
= —xcotx+10gs1nx—?

13 Evaluate: J.xcotxcoseczx dx

I =Ix(cotxcoseczx) dx

..By integration by parts,
= —lxcot2 x—J‘—lcot2 x dx
2 2
1 . 2
=——xcot x+—Jcosec x—1dx
2 2

= —lxcot2x+l(—cotx—x)
2 2

1+ cot® x = cosec’x

D(cot x) =—cosec’x

14. Evaluate: j log(1+x) dx

Let
u=x and dv=cosec’x dx

du=dx and v=-cotx

1+ cot’ x = cosec” x

Let
u=x and du=dx

2
dv=cotxcosec x dx

V= Icot xcosec’xdx
If y=cotx, dy=—cosec’xdx

v= jcotxcoseczxdx = I—ydy

Let

uzlog(1+x2) and dv=dx

du =;.2x dx and v=x

(1+x2)
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1= Ilog(l+x2) dx

:log(1+x2).x—jx

| 15. Evaluate: J‘(logx)2 dx
I={(logx)" dx
= (logx)’ x —szlogxl dx (IBP)
= x.log(log x)” - 2jlogx dx
= x.log(log x)’ —2[logx.x— | i.x dx} (IBP)

= x.log(logx)2 —2[x.logx—x]

16. Evaluate: '[x".logx dx

1= I logx dx

n+l

xn+1 1 X
= 1 . B d
(ng) n+l x n+l *
n+l
I "d
(ng) n+l n+1jx *
xn+1 1 xn+1
=(1 . — .
(ng) n+l n+l n+l

17 Evaluate: J sin”' x dx

Let
= (logx)2 and dv=dx

du=2logx.—dx and v=x

du:ldx and v=x

X

Let
u=logx and dv=x"dx

n+l

X

duzldx and v=
X n+l

Let
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I :I sin”' x dx
1

1—x?

dx

P
=sin  x.x— Ix.

=x.sin'x+1-x>

18 Evaluate: J' xtan™ x dx

I:I xtan™' x dx

= %z.tanl X —% [x —tan’ x]

19 Evaluate: J. x? tan"gdx

3 3
:tan"lf.x——J.x—. 2 > dx
2 3 3 4+x
3
—‘[an"lf x__g i > dx
2 3 374+x
3 4+ x
X 1 4, 2x
=—.tan ——— | xdx +—
3 -[ I +x°
3 2
X g X X 2
=—.tan =—="—+—log(4+x
St g(4+x7)

u=sin"'x and dv=dx
du = dx and v=x
1—x?
Let
t=1-x*
dt =-2x dx
1
1 L 2
J'—dt:jt = ot
7 T
2
Let
u=tan'x and dv = xdx
1 X’
du = de and v=—
1+x 2
Let
u:tan’lg and dv = x*dx
3
du = lz—dx and v=x—
X 3
1+—
4
du = 2 2a’x
4+x
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20. Evaluate I cos"x dx by using integration by

parts.
jcos”x dx = Jcos""x cosx dx

-1 . . -2 .
=cos"" x. s1nx+Jsm x.(n—1)cos" ~ x.sin x dx
-1 . _2 .2
=cos" " x.sinx+(n —I)Jcos" x.sin” x dx

=cos" ' x.sinx+ (n— l)J cos"? x.(l —cos’ x) dx

Let u=cos"'x and dv=cosxdx

du =(n—1)cos" x(—sin x)dx

=—(n—1)cos"* x.sin x dx

y=sinx

=cos" " x.sinx+ (n— l)I cos" > xdx— (n— l)j cos” xdx

=cos" ' x.sinx+(n-1)I,_,—(n-1)I, where I, = J.cos”x dx

I, +(n—1I, =cos" " x.sinx+(n-1I_,
nl, =cos"" x.sinx+(n-11I_,

(n=D

n

In—Z

1 O
I = —(cos” ' x.sin x)+
n

21. Evaluate I sin"x dx by using integration by
parts.

J-sin"x dx = J-sin”’lx sin x dx

= —sin"" x.cos x — I— cos x.(n—1)sin"~> x.cos x dx

=—sin"" x.cosx +(n— I)I sin"~ x.cos” x dx

= —sin"" x.cosx + (n— l)j sin" x.(l —sin’ x) dx

Let u=sin"'x and dv=sinxdx

du = (n—1)sin" " x(cos x)dx

=(n—1)sin" x.cos x dx

V=—CO0SX

=—sin"" x.cos x + (n— I)I sin"? xdx —(n— l)j sin” x dx

I, =-sin""x.cosx+(n—1) I, ,—(n—1) I, where I, = Jsin"x dx

I,+(n-1)1,=-sin"" x.cosx+(n-1) 1,
I, (1+n-1)=-sin""x.cosx+(n-1) 1,
nl, =—sin"" x.cosx+(n-1)1,_,

I . . -1
I, =——sin" ! x.cosx+ 1D I,

n n

https://doi.org/10.5281/zenodo.15288161
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22. Evaluate I xsin"x dx by using integration by parts.
Let u=xsin""' x and dv=sinxdx
du =sin"" x+(n—1)xsin" > x(cosx)dx and v=—cosx

J.x sin"x dx = J.x sin"'x sinx dx

| - n-1 - n=2
=—xsin” x.cosx—j—cos x.[sm" x+(n—1)x.sin""" x.cos x] dx
. n-1 . n-l ) 2
=—xsin” x.cosx+jcos x.sin"” xdx+(n —l)stm” x.cos” xdx
| - n—l . - n=2 -2
= —xsin” x.cosx+j sin”” xd(sin x)+(n—1)jxsm" x.(l—sm x)dx

B . e sin” x
=—xsin"" x.cos x+

+(n —l)jxsin’“2 xdx—(n—l)jxsin” xdx
[ =—xsin"" x.cosx+ >+ (n—1)I,_, —(n—1)I,
n

n

sin” x

I,(1+n-1)=—xsin"" x.cos x + +(n-DI_,

b (]

e sim"x (n-1
I, =——xsin"" x.cos x + — +( )IH
n n n

INTEGRATION OF TRIGONOMETRIC FUNCTIONS

1. Evaluate [ cos3 xdx.

J‘cos3 xdx =fcoszx- cos xdx

= [(1 —sin%x) cos xdx
= [(1—-u®)du

1
=u—-ut+C
3
. 1. 3
= sinx —7sin x+C

2. Evaluate [ sin? xdx.

s 1 V3
fsinzxdx:—f (1— cos 2x)dx
0 2Jo
_1[ 1 . 2]”
=[x~ sin xO

=%(n—%sin2n) —%(O—%sinO) = %n
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: :
3. Evaluatef sin® x dx 4. Evaluate I sin’ x dx
0 0
By reduction formula, By reduction formula,
: :
I sinéxdx:ﬂzzs—ﬂ I sinéxdx:ﬂ:i
) 6422 32 ) 642 16
i
5. Evaluatef log(1+tan@)d6
0
bet 4 1 0+1 0
: :j log( +tan@+1—tan jd@
I=[ log(1+tan6)do ) I+tan
0 z
4
4 _ =j log( 2 jd&
:j log 1+tan(z—9Dd9, By property 0 1+tand
0 z z
4 4
z tan” — tan = log2 d0-| log(1+tan6)de
:j log +—34 e i 0
0 1+tan” tan 6 3
4 I = j log2 dO—1
z 0
t 1-tan @
=| log|l+ do _ 7
'([ g( 1+tan6?j 2r= ZIng
V1
I = —log2
] g
1
6. Evaluate I [tan‘1 x+tan“(1—x)] dx
0
Let 1
1 | 1=2[xtan”x] -2 —— ar
I=I tan~' x dx +j tan'(1-x) dx o 1+x
0 0
5T 2\7'
1 1 —2.2 [log(1+x )]0
=I tan~' x dx +I tan ™’ [1—(l—x)] dx
’ ’ zg—[log2—log1]
:ZI tan~' x dx
0 V4
Let 25—10g2
u=tan'x, dv=dx
du = ! =, V=X
I+x
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STRATEGY FOR EVALUATING | sin™ xcos™xdx
(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and use

cos2x = 1 — sinx to express the remaining factors in terms of sine:
f sin™ xcos?**1xdx = f sin™ x(cos?x)* cos xdx
= [ sin™ x(1 — sinx)* cos xdx

Then substitute u = sin x.

(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use

sin“x = 1 — cos2x to express the remaining factors in terms of cosine:
j sin?®*! xcos™xdx = f(sinzx)kcos"x sin xdx

= (1 — cos?x)¥cos™x sin xdx
Then substitute u = cos x.

[Note that if the powers of both sine and cosine are odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identities

1 1
sinx = 5 (1— cos2x), cos’x= 5 (1+ cos 2x)

. . : : : 1.
It is sometimes helpful to use the identity sin x cos x = > sin 2x

We can use a similar strategy to evaluate integrals of the form [ tan™ xsec™xdx.

(a) Since (d/dx) tan x = sec?x, we can separate a sec?x factor and convert the remaining

(even) power of secant to an expression involving tangent using the identity sec?x =

1 + tan®x.

(b) Or, since (d/dx) sec x = sec x tan x, we can separate a sec x tan x factor and convert

the remaining (even) power of tangent to secant.

1. Evaluate I sin’ x dx sin’ x

dx

2. Evaluatef
cos’ x

J. sin’ xdx = I(sinz x)2 sinx dx

J- Sin7xdx J. (Sinz)c)3

2 . 4 = 4
=.|.(1—cos2 x) sin x dx cos® x cos’ x
3
2. 1 cos? x
:J. l—coszx) sin x dx _J‘
cos® x

[ Put u =cosx, du=—sinxdx ]

sin® xdx =—{(1=u?) du
J J(1-)

https://doi.org/10.5281/zenodo.15288161

sinx dx

[ Put u =cosx, du=—sinxdx ]

-~ 7 sinx dx
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:J.—l—u4+2u2 du

w 2w’
=|u——+—

5 3

1
=—| —(1-u°+3u’-3u’)du
[ =0 3u* -3u’)d
u

cos’x 2cos’x
= | —cosx— 5 + 3 +c :I —u +u’ =3+3u du

1 3 1
= 3 +COS x—3COSX—3
3cos’ x 3 COS X

3. Evaluate [ tan® xsec*xdx.

We can then evaluate the integral by substituting u = tan x so that du = sec?xdx:

J‘tan6 xsec*xdx =ftan6 xsec?xsec’xdx

= [ tan®x(1 + tan®x)sec?xdx
= [u®(1+u®)du

= [(u®+u®)du
7 9

==+ 4¢C
7 9

1
= %tan7x + ;tan"x +C

4. Find [ tan® 0sec’0d0.

] tan® Osec’ 0dO If we separate a sec 6 tan 6 factor, we can

convert the remaining power of tangent to

_ f tan® Bsecd sec § tan 8do | A1 expression involving only secant using
the identity tan?6 = sec?6 — 1.

= J(secze —1)%sec®d sec O tan 6d6 _
We can then evaluate the integral by

= [(u? — 1)*udu substituting u = sec 8, so

du = sec 8 tan 6d6:

= J(u10 —2u® + u®du
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EE! NI
e —2—+—+C
11 9 + 7 +
1 2 1
= Hsec“@ - §sec99 + 7sec70 +C

5 Find [ tan3 xdx.

Here only tan x occurs, so we use tan’x = sec?x — 1 to rewrite a tan®x factor in terms

of sec?x:

f tan3 xdx = f tan xtan®xdx

= jtan x(sec?x — 1)dx
= [ tanxsec?xdx — [ tan xdx

= j tan xd(tanx) — J tan xdx

2
=tar21x— In|secx|+C

To evaluate the integrals
(a) [ sinmx cos nxdx,
(b) [ sinmx sin nxdx, or

(c) [ cosmx cos nxdx, use the corresponding identity:

(a) sinAcosB =

N |-

[ sin (A—B) + sin (A + B)]

(b) sinAsinB ==[cos (A—B) — cos (A+ B)]

N |-

(c) cosAcosB =

N |-

[cos (A—B)+ cos (A+ B)]

Example: Evaluate [ sin 4x cos 5xdx.

This integral could be evaluated using integration by parts, but it’s easier to use the identity

as follows:
1
f sin4x cos 5xdx = fz [ sin (—x) + sin 9x]dx
=%f(— sin x + sin 9x)dx

_1 ! 9x) + C
—2(cosx 9cos X)

https://doi.org/10.5281/zenodo.15288161

246 | Page



INTEGRATION BY TRIGONOMETRIC SUBSTITUTIONS

Expression Substitution Identity
, . T T - 5
slat— x? X = a sin 0, *;f =8 ;— 1 — sin“0 = cos’6
T T 5 5
N o x = atan 6, = <9< 5 1 + tan"6 = sec-0
7 > ; T 37 N S
o e x=aseclO 0=0< 7 or m= 0 < 5 sec@ — 1 =tan"0
Vo—x2 = i =
1. Evaluatef 9x2x dx. Letx = 3sin 8, Then dx = 3 cos 8d6
9 —x2=_[9—9sin’0 = 3 cos 6

V9 — x2 3 cos @
j dx=j 3 cos 6d6

x2 9sinZ0

_Jcoszedg Since sin 6 =§,c056 =1 —sin20
~ ) sin26
2 = x?
= [ cot* 6do =J1- %
= f(coseczﬂ —1)do _ [o=x?
9
=—cot@—-0+C v/
co + cos® V9 —x23 9 — x2
COtg:sinQZ 3 ;: X
9—x2 L1 X
= — —sinT"=4+C
3

Since sin & = x/3, we have 8 = sin"1(x/3)

Letx = 3sin 8, Then dx = 3 cos@ df

V9 —x2 = "9—9sin20 =3 cos b

WKT 1+ cot® 8 =cosec’6

1
2. Evaluate I—dx
x*J9—x?

3cos@

1
J.x“\/9—x2 i _I34 sin* @.3cos & 40

- I; 40
3*sin* @ Put cot@=u; ..du=—cosec’0d0O
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L _[ cosec’0 do | T
81

. . X
From the assumption sin 8 =

ij cosec’d.cosec’ do
81

9—x?
. tan@ = and cotf =

9—x* X
LI (1+cot2 0).coseczt9 do
81

V9 — x2
+— 5 +c
81 X 3 X
1
3 Find [ ———dx.
x2Vx2+4 Letx = 2tanf, Then dx = 2sec?6d0
x2Vx2 +4 J 4tan20-2secH = \/4sec?6
= 2secH
_ 1] seCO e
" 4 J tan26
secd 1 cos?0 _ cos @
_ lf cos ¢ tan20  cos @ sin?0  sin26
4 ) sin26
Letu = sin 8, du = cosfdo
_1lrdu
47 uZ
1 1 Since tan0==, sin@ = ad
i (_ Z) +C 2 x"+4
= Ve
4sin 6 cosec O = .
_ cosec 6 1 C
4
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4 Evaluate

J25x% —4
R

4
e, o,
X X

2

“tan @ )

= S —secfHtan@ do
2

~secd

_5.2 j tan 6 do
5

=53jtan 0 do

5
'[ sec’0—1 do

= [an@ 0]
{25x— 1S_X}

2
5 fre 2
5 Evaluate J. M dx
4 X

From the previous example, we have

when x=-
5

25 25

WKT 1+tan’ @ =sec’ 0

\/xz —i = itanzé’ =§tant9

.5
From our assumption — =secé

https://doi.org/10.5281/zenodo.15288161

X
2
2
— =cosd
5x
5x
g
2
2
stec‘l% and tan@zM
i, —i=%secﬁ
245 _ 1
52 cosé
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dx =2 sec’0-1 dé
Kl o in
5
=-2 [tan0-0]:~
3
=2 (tan;z—;z)—(tanz—ﬂ—z?ﬂﬂ
afoenr{6-5]
) (Z_\/gj
3
2 -1
6 Evaluate: J.anx dx
1+x

2 2 2
when x=—-——=, —===sect

25 1

52 cosf

cos@=-1

@ =cos™ (—1)

V4

In the range of 2?” <@ <, the tangent is

negative. Therefore

\/xz —i = itan2 0 =—ztan0
25 25 5

Let x =tan@, the dx =sec’ 6 do
and 6 =tan"" x.

1+tan’ @ =sec’ @

IBP
Let
u=_6 and dv=sec’0 do
du=d6 and v=tan@
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I= J~xtan "x
1+ x*

_J-tan 0.6
1+ tan’ @

sec’ 0 dO

_J-tané’ 0 sec’ 0 do

S€C

=I (secze—l).edﬁ
=J' 9.sec29d9—j 0 do

2
- [0.an0]- [tand 40~ (13P)

2

= [«9. tan 9] —log(secf) — %

2
= [H.tané’]—log V1+ tan’ —%

2

1
= [H.tané?]—glog(1+tan2 9)——

- [x.tan‘l x] —%log(l +x° ) - %(tan‘1 x)

-1
T xtan~' x

d
0 (1+x2)2 )

7. Evaluate:

2

Let x =tan@, the dx =sec’ 0 dO
and 6 =tan™' x.

1+tan’ @ =sec’ 6

IBP
Let
u=0 and dv=sin20 d@
du=d0 and v=- 008229

coswt =—1,

https://doi.org/10.5281/zenodo.15288161

sin0 =sinxz =0
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/2
= &'ngsec2 0 do

0 (1+ tan” 49)

/2
= tanz'eseczede
sec

do

3 ”j-z tand . 0
. sec’d

sin @

= 0. .cos’ 0 dé

cosd

© Ty

/2

=I O.sin@cos@ dO
0

/2

=lj 0.sin26 do
2 0

/2

1 9—00329 _l”/z —cos26
20 2 ], 2 2

0

d® (IBP)

/2
= —5[9.00529]3/2 +i j cos26 do

0

1|« 1| sin28 i
=——| —coSm |+—
4| 2 4 2

dx 9 Evaluate: '[ (Sm—:;;z dx
1-x

xsin”' x

8 Evaluate: I

1—x?

252 | Page
https://doi.org/10.5281/zenodo.15288161



1 x2 ( _x2)3/2
Put x =sin@, dx=cos@ dO, 6 =sin"' x Put x =sin......(J)
0.sin0 _ o
]=I—cosa do dx =cos0 df, 6 =sin"' x
\J1-sin’*@
0.sin 6 1 =j—0 __cos® do
I=[——=cos6 do (1-sin’6)
\Jcos* @
1=[0.5in0d0o r=| 0 o5 do
cos’ @
Lel‘u=l9, dv =sin6d@ I=I9.Seczﬁd(9

Sodu=d6, v=-cosfdf )
Letu=6, dv=sec 0 db

By integration by parts,
ymes I P © du=do, v=tan6do

I= H(_COSH) - I_COSH do By integration by parts,

=—0cos@+sinf jze(tane)—jtanﬁ do

— 1 2 1
=—0\1—sin” 6 +sin 6 =@tan & — (—logcos )

=—sin"'x.Vl-x> +x =@tan @ +logcosd

= sin " x——2+ log/1—-x*
J1-x*

From (i)

cos@ =/1—sin? 0 = /1 - x>

sinfd  x
cosd Jl_xz

tand =

TECHNIQUES OF INTEGRATION:
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Let us consider a rational function

_ P
f(x) = 0

whereP and @ are polynomials. It's possible to express f as a sum of simpler fractions

provided that the degree of P is less than the degree of Q. Such a rational function is called
proper.

If f is improper, that is, deg (P) = deg (Q), then we must take the preliminary step of
dividing Q into P (by long division) until a remainder R(x) is obtained such that deg (R) <
deg (Q) . The division statement is

£ = T2 = () + )
x)=—-—==S5(
(x) Q(x)
Where S and R are also polynomials.
. x3+x
Example: Find [—dx.

Since the degree of the numerator is greater than the degree of the denominator, we first
perform the long division. This enables us to write

x3 +x 2
f dx.=f(x2+x+2+m)dx

x—1
x3  x?
=?+7+2x+21n|x—1|+C

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS:
The process of expressing a rational expression and decomposing it into simpler rational
expressions, that we can add or subtract to get the original rational expression, is called partial
fraction decomposition.
Suppose

Q(x) = (ayx + by)(azx + by) -+ (agx + by)
where no factor is repeated. In this case the partial fraction theorem states that there exist
constants Ay, Ay, ..., Ay such that

R(x A A A

QEx% - alxj-b1+a2xj-b2+m+akx—-llc-bk

R(x) Aq Az Ay
Q(x)  (ax+b) (ax+b)t L (ax+b)k

Suppose Q(x) = (ax + b)*, then

R(x) _ Aqx+b Ayx+c Axx+z
Q(x)  (ax2+bx+c)  (ax2+bx+c)l (ax2+bx+c)k

Suppose Q(x) = (ax? + bx + ¢)¥, then

These constants can be determined as in the following example.

x242x-1

Example: Evaluate [ ————

Since the degree of the numerator is less than the degree of the denominator, we don’t need to
divide. We factor the denominator as
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2x34+3x2 = 2x =x(2x*+3x—2) =x(2x — D(x + 2)
Since the denominator has three distinct linear factors, the partial fraction decomposition of
the integrand (2) has the form

x*+2x—-1 A N B N C
xQx—1D(x+2) x 2x—1 x+2
To determine the values of , B, and €, we multiply both sides of this equation by the example

product of the denominators, x(2x — 1)(x + 2), obtaining
x> +2x—1=AQRx—1)(x+2)+Bx(x+2)+ Cx(2x — 1)
x> +2x—1=QR2A+B+20)x*+ (B3A+2B—-C)x—2A
The coefficient of x? on the right side, 24 + B + 2C, must equal the coefficient of x? on the left
side—namely, 1. Likewise, the coefficients of x are equal and the constant terms are equal.

This gives the following system of equations for, B, and C:

24+ B+2C =1 L
2
34+2B— C =2
B+2C=0..(1) adding (1) & (2)
—24 =-1

. 2B—C:l SB:2:>B:%
Solving, 2

| »n

wegetA==, B=1/5and C=-1/10, | 4B-2C=2..(2) ()= C=-

f x? +2x — 1 _f11+1 1 11
223 +3x2 —2x 7 T ) 2% " 52x—1 10x+2

=Ilnlx|+—=In|2x—1|——=In|x+ 2| + K
2 10 10

Example: Find [ %, where a # 0.

The method of partial fractions gives
1 1 A B

= = +
x*?—a? (x—a)(x+a) x—a x+a

1=A(x+a)+B(x—a)

putx =a, A(2a) =1. so A=i. putx = —a, B(—2a) =1, soB=—i.

f dr 1 1 1
x2—a? 2a)x—a x+a x

1
:%(ln|x—a|— In|x+al)+C
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_ 1 1 X—a
" 2a nIx+a

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTION:
A A A
1 _.|_ 2 + + —T
a;x+ by (a1x + by)? (a1x + by)"
By way of illustration, we could write
x*-x+1 A B C D E

xz(x—1)3_;+F+x—1+(x—1)2+(x—1)3

| +C

4_ 2
Example: Find [ S22 gy

x3-x2-x+1
The first step is to divide. The result of long division is
x*—2x%+4x+1 4x
x3—x2—-x+1 :x+1+x3—x2—x+1

The second step is to factor the denominator Q(x) = x3 — x? — x + 1. Since Q(1) = 0, we

know that x — 1 is a factor and we obtain
x3—xt—x+1=x-1Dx%*-1)
=(x-Dx-1D(x+1)
=(x—-1%*x+1)
4x A B C
= + +
x—1D?*(x+1) x—-1 (x—-1)2? x+1

4x =A(x—D(x+1)+B(x+1)+ C(x —1)?

Put x=1 Put x=-1 Put x=0

4=2B —4=4C 0=—A+B+C

B=2 C=-1 0=—A4+2-1
A=1

d —J 14—t .
x= ) x—1 (x—1)?2 x+1

x*=2x%>+4x+1
j 1dx

x3—-x2—-x+1

x? 2
=—+4+x+ In|jx—1|———In|x+ 1|+ K
2 x—1

x? 2 X —

=—+4+x——+1In
2 x—1 Ix+

ek
7|

2x%2—x+4
x3+4x

Example: Evaluate [

Since x3 + 4x = x(x? + 4) can’t be factored further, we write
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2x2—x+4_A+Bx+C
x(x2+4)  x  x2+4
2x2—x+4=A(x*+4)+ (Bx+ O)x

Comparing the coefficient of x> ~ Comparing the coefficient of x Put x=0
2=A+B C=-1 4=44
B=1 A=1
foZ—x+4d J1+x_1d
——dx = | - x
x3 + 4x X x*>4+4

fo —x+4 f d + f 1 d
x(x2+4) x Z+4

1 1
= In |x| + > In(x?+4) — Etan_l(x/Z) + K

4x2-3x+2

Example: Evaluate [ pRE

Since the degree of the numerator is not less than the degree of the denominator, we first
divide and obtain

4x2—3x+2=1+ x—1

4x2 —4x + 3 4x%2 —4x + 3
Notice that the quadratic 4x? — 4x + 3 is irreducible because its discriminant is

b% — 4ac = —32 < 0. This means it can’t be factored, so we don’t need to use the
partial fraction technique.

To integrate the given function we complete the square in the denominator:
4x? —4x+3=(2x—1)> +2
This suggests that we make the substitution u = 2x — 1. Then, du = 2dx and

x=%(u+1),so

j4x2—3x+2d —J<1+ x—1 )d
AxZ —dx +3°°7 4xz —4x+3)

x—1
=J (1 + (2x—1)2+2) dx
2(u+1)—1
x+2,f—u2+2 du
_ +1fu_1d
Y PR b
~ +1f v 1f 1
AT w2 ) w2
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1
=x+=

=x 3

1
ln(u +2)——

4 2

In (4x? — 4x + 3) —

tan™? (—) +C

V2

2x —1
tan™1(

V2

42

Y+ C

Solved Problems

X +x—1

1 Evaluate / = J. "y
X

dx
x4+ x?

Consider
X +x° —6x=x(x2 +x—6)
=x(x+3)(x—-2)

A

X

¥ +x-1
x(x+3)(x-2)

B C
x+3 x-2

¥ +x—1=A(x+3)(x=2)+ Bx(x—2)+ Cx(x +3)

Put x=0 Put x=2 Put x=-3
-1=-64 5=10C 5=15B
6 2 3
X +x—1 11 1 1 1 1

- e 4
x(x+3)(x-2) 6x 3x+3 2x-2

—d _J'

1

|

l dx +
X

1

3

1
x_

2

2 Evaluate / = J.ﬂ
x a)x

Consider

2
X

(x—a)(x—b)

A

X—a

B
+—
x—b

x'=(x—a)x—b)+ A(x—b)+ B(x—a)

Put x=a Put x=b

a’*=A(a-b) b*°=B(b-a)

dx+I

dx

| eoe 3 '41+

1

—a

1
x—b

dx

2 b2
szldx+aa_bjx dx—a_bj

2 2

a b
log(x—a)—
p g(x—a) -

I=x+ blog(x—b)

1 1 1
—logx+—=log(x+3)+—log(x—2
g logx+2 g(x+3) 3 g(x-2)
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3 Evaluate / = _[ —dx

(x +1)

IJ. x+1

(multlply Nr & Dr by x*)

Put x’ =z, then 5x‘dx=dz

1 1
=— d
5 Z(z+l) “
1 A B
= — 4+ —

1=A(z+1)+ B(z)

Put z=0 put z=-1

_j' —dz——

—dZ
z+1

= %[log z—log(z+ 1)]

= é[log x - log(x5 + 1)]

1 5
=—lo
5 gx5+1

4 Evaluate / = I

; 1

dx

o 2e -1

Put e" =z, then e'dx=dz i,e.

when x=0,z=¢" =1

when x=1,z=e

Consider

1

z(2z-1)

A

z

B

2z-1

1=A4A2z-1)+B(z2)

Put z=0

Put Z:l
2

dx =—

=[-log z]f +[log(2z —1)]f

= [—log e+log 1] + [log(2e— - logl]

=[-1+log(2e-1)]

https://doi.org/10.5281/zenodo.15288161
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When the denominator contains repeated and non repeated linear factors:

x—1

5 Evaluate / = J‘mdx
X— X+

x—1 ! N B N C
x=2)(x+D)> x+1 (x+1)* x=2
(x=2)(x+1)

x—1=A(x=2)(x+1)+ B(x—2)+ C(x +1)°

Put x=2 Put x=-1 Put x=0
1=9C —-2=-3B —1=-24-2B+C
C:l B:Z _1:_2A_ﬂ+l
9 3 3 9
i.e.Az—l
9

x—1 4 N B N C
(x=2)(x+1)> x+1 (x+1)° x-2

I=—l deﬁtg‘[
97 x+1 3

1
(x+1)°

dx+lj;dx
99 x-2

1 2f 171
=—~log(x+1)+=| ——— |+ —log(x—2
g loglx+ ) 3[ x+1} g 08lx=2)

3x+1

6 Evaluate /= IW X
X+ X—

3x+1 ! N B N C
x+3)x=-1D* x-1 (x=1° x+3
(x+3)(

3x+1=A(x=1)(x+3)+B(x+3)+C(x-1)

Put x=1 Put x=-3 Put x=0
4=4B -8=16C 1=-34+3B+C
B=1 C:—l 1:—3A+3—l
2 2
i.e.A:l
2
3x+1 1/2 1 -1/2

G-Iy x-1 (-1 x+3

Il ! el
[:ij—ldﬂj(x—1)2dx_5jx+3dx

1 11
= ~log(x—1)—————log(x+3
S log(r—1)————-log(x+3)

260 | Page

https://doi.org/10.5281/zenodo.15288161



The following method is useful for the case where the denominator contains repeated linear
factor with high index. In this method arrange Nr and Dr in ascending powers of x.

7  Evaluate / = I x+1 dx Divide x+1 by —1+x .till x* appears
xt(x-1) as a factor in the remainder.
—1-2x-2x"-2x°
Consider L4 x+l 14x|1+x
x —l+x - x
I x+1 1 2 -
— = (=1-2x-2x"-2x )+ 2
xt —1+x x4( ) —1+x *
2x—2x
-4 -3 -2 1 2
=-x —2x7-2x"-2—+ 2x2
x —l+x
1 1 | 2x° =2
T dx= j— - X -2—+ dx 253
xt —1+x x —l+x . \
= 5 4 2x" —2x
:———2——2——210 x+2log(x-1 4
11 1 1 ] z(—1—2x 2x° 2x) 2x
=§—+—+2——210gx+210g(x 1) —1+x —1+x
XX

TECHNIQUES OF INTEGRATION:

If Q(x) has the factor ax? + bx + c, where b — 4ac < 0, then, the expression for R(x)/Q(x)
will have a term of the form 2CX+ d
ax" +bx+c
Where A and B are constants to be determined. For instance, the function given by
f(x) =x/[(x —2)(x? + 1)(x? + 4)] has a partial fraction decomposition of the form
X A Bx+C Dx+E
G- D@ TN +d -2 w114

The term can be integrated by completing the square and using the formula
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x—1

8 Evaluate / = j ——————dx
(x*+1)(x+1)
Consider
x—1 A Bx+C

(x2+1)(x+1):x+1+ 4l

x—=1=A(x* +1)+(Bx+C)(x+1)

Put x=-1 Put x=0 Compare coeff of x’
—2=24 —-1=4+C 0=A4+8B
A=-1 Cc=0 B=1

x—1 -1 x

(x2+1)(x+1):x+1+x2+1

I:I _—ldx+ 5 dx
x+1 x +1
1
=—log(x+1)+—=log(x* +1
gCr 1)+ log(x* +1)

Integration of Irrational Functions

1
To integrate | ———dlx
quadratic

9 Evaluate / :_[ ( al

= ix
X +4)(x-1)

Consider
X A Bx+C

(x2+4)(x—l) :x—1+ x*+4

x=A(x" +4)+(Bx+CO)(x-1)

Put x=1  Putx=0 Compare coeff of x’
1=54 0=44-C 0=A4+8B
a=1 =2 B=—1
5 5 5
X 11 1 x—4

(¥ +4)x-1) Sx-1 5x+4

I:l de—lJ‘ 2x dx+iI 21 dx
59 x-1 5 x"+4 5 x +4

1 11 X

=—log(x=1)—==log(x* +4)+ tan”' =

5 &l ) 52 g( ) 5%2 2

1 1 4 X
= —log(x—1)——log(x*+4)+—tan"' =
5loa(e =D —glog (x +4)+ frtan 2

Make the coefficient of x” unity by taking coefficient of x* outside.

Complete the square in terms containing x by adding and subtracting the square of half of the

coefficient of x.

Use the proper standard form.

Note: If the denominator is a perfect square, factorise and apply partial fraction method.
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1

1 Evaluate: Iz—dx 2 Evaluate: I I

2—a’x
3x°+12x-15

x*=2x+1
1 1
[=|——dx [=|—————dx
'[2x2—2x+1 J.3)cz—i-12x—15
:l ;ldx =l.|.2;dx
2° 2 4L 39 x" +4x-5
1 1 -3 s
== L — 37 (x+2) =(2) -5
2 1 1 1
x=> -5 ] +5 1 1
2) 2) 2 == ——dx
3 (x+2) -9
~ 1/2 p
Sy RIS
(x‘zj + 2) 323 2(x+2)+3
1 103
~tan! 7 18 “(x+2)+3
2 |
1 xX—a
= tan™'(2x 1 Note: dx=—Tlo
an” (2x—1) ore '[)cz—cz2 g 2a gx+a
Method to evaluate Iﬂ dx
quadratic

Put linear = A+ B di(quadmtic)
X

Equate the coefficients on both sides and find the constants and use this in the given integral

and take integration.

1 Evaluate: jZX;ldx 2 Evaluate: j

X +2x+5

2x+1
—————dx
3x +12x-15
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x+1
[=|————dx
J.szr2x+5

Let

x+1:A+Bi(x2+2x+5)
dx

x+1=A+B2x+2)

Comparing the coefficients
1=A4+5B

1=2B ie. B:l
2

A+5 1 =1 ie. A=1—§=—§
2 2 2

x+1:—§+l(2x+2)
2 2

x+1
I=| ——d
I X2 +2x+5 *
3 1
-~ +-(2x+2
:j 2+2( x+ )dx
X +2x+5
3
=I I (2x+2)
x° +2x+5 x* +2x+5
1
=—— dx+—lo xX*+2x+5
jx+1 2 g( )
3 2 1
=— dx+—log(x*+2x+5
2><2j(x+1)2+4 5 el )

:—Etan"1 Xl +llog(x2 +2x+5)
4 2 2

3 Evaluate jﬂdx

x +x+1

Let I = jﬂdx

x +x+1

2x+3:A+Bi

7 (x2+x+1)
X

2x+1
:Iz— X
3x"+12x-15
Let

2x+1=A+Bi(3x2+12x—15)
dx

2x+1=A+ B(6x+12)
comparing the coefficients

2=6B ie. B:l
3

1=A4+12B
1:A+12(%) ie. A=-3

2x+1=—3+%(6x+12)

I 2x+1

=| ————dx

3x? +12x—15
—3+1(6x+12)

_ 3 e
3x* +12x-15

J. _J‘ (6x+12) I

3x% +12x— 15 3x2 +12x—15

___J- I (6x+12)
3 x2+4x—5 3x* +12x-15

_Ej(x+2)2——4—5 dx+% log(3x” +12x-15)

_Ejm dx+% log(3x” +12x-15)

1 o (x+2)- 3
(x+2)+3

+3 1og(3x +12x-15)

e+ [ G @x+D)

x’ +x+1

( R
X+
2 4

dx+log(x2+x+1)
+1——
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2x+3=A+B(2x+1)
Comparing the coefficients

2x+3:A+B(2x+1)
2-2B, B=1
3=4+B, A=2

I I2+(2x+1)
X +x+1

12
4 Evaluate: _[ —)dx
X +2x+2
Let [ = J'ﬁ
X +2x+2

4+ 2x+ 2|2 +2x+2
—4x-1

:I%dx+log(x2 +x+1)

3
x+= | +=
( 2 4

2 2
=—ta +log(x" +x+1
o el e
2
1 2
5 Evaluate: j ?x—+3 x
o Sx"+4x+35
1/2

4x* +0x+3

8x? +4x+54x2 +2x+5/2
—2x+1/2
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| J‘l_ 4x+1
x+2x+2

_J‘ 4x+1
x° +2x+2

Consider

4x+1=A+Bi(x2+2x+2)
dx

4x+1=A+B(2x+2)
Comparing the coefficients
4=2B ie. B=2
1=A4+2B

1=A4+4 ie. A=-3
4x+1=-3+2(2x+2)

o[

3+2(2x+2)
X +2x+2

:x_U SPIECIE (2x+2)
x’ +2x+2 X2 +2x+2
:x+3j~ j (2x+2)
(x+1) x’ +2x+2
- (2x+2)

-[(x+1) I -[x +2x+2

=x+3tan” (x+1) - 2log (x” +2x +2)

“

1
_2x+5

[—.1[ l+—
. 2 8x'+4x+5

1 1} 4x—1
= —_—— 2— X
2 20 8x“ +4x+5

Consider 4x—1= A+Bi(8x2 +4x+5)
dx

4x—-1=A+B(16x+4)
Comparing the coefficients: 4=16B ie. B=1
—1=A4+4B, —-1=A4+1 ie. A=-2

4x—1=-2+1(16x+4)

l_l‘i' 2+1L (16x+4)
0 8x*+4x+5

1 1
1 IJ' . dx+lj (16x+4)
2 2 o 8x"+4x+5 44 8x° +4x+5
1 1
:l+ 2 J» : 1 dx—l (16x+4) .
2 2x8y xT+ox+g 89 8x* +4x+5
1 1 1 ,
_E+§J. 1 de——[log(Sx +4x+5)}
0 (xrg) o
16 8

1 1
=—+- ——10g17 log5
2 8'([ (x+‘2+— | |
16
1
IR G | B U
2 D

To evaluate I quadratic dx or I W

Make the coefficient of x* unity by taking its coefficient outside the square root sign.
Complete the square in terms containing x by adding and subtracting the square of half of the

coefficient of x.

Use proper standard form
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2
X a . . x
f az—xzdx:E\/az—x2+7sm s

a

2
X a ., X
J. az+x2a’x=§\/az+x2 +751nh g

a

2
J. xP—atdx = %xlxz —a? —a?cosh*lz

a

dx . X dx L X

J.Tzsm a J-Tzsmh .

a —x a a +x a
dx 1 . x

—coshl— I =—sec ' =

fﬁ e

1 Evaluate I\/xz —2x+2 dx

j X —2x+2 dx =J‘«/(x—l)2—12+2 dx
:N(x—l)%l2 dx

:g«/(x—l)erlz

smh 1=

1
3 Evaluate | ——— 4
j P —2x+2 *

dx

2x+

I\/(x )2 —12+2

I
_J‘«/(x—l)2+12 *

=sinh™'(x—1)

5 Evaluate j

1
-4
V3x=2-x* ¥

J.; dx:j ! dx
V3x—-2-x7 \/m

2 Evaluate J\/3 +2x—x" dx

I\/3+2x—x2 dx =J../3—(x2—2x) dx
:J.«/3+12—(x—1)2 dx
=H22—(x—1)2 dx

_X [z —1(x 1)
2 2 (- )+2 2

4 Evaluate j

D S
V3+2x—x2

J‘;dxzjl;dx

dx

:I\/3+12—(x—1)2

1
_.[ ,22—()6—1)2 dx
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=sin™' (2x — 3)

Ji
Method to evaluate Ilinear quadratic dx or I A gy

Jquadratic

Put linear = A+ B di(quadmtic)
X

Equate the coefficients on both sides and find the constants and use this in the given integral
and take integration.

1 Evaluate /= j (x+ 227 +2x+1 dx

d
x+2)=A+B—(2x* +2x+1
(x+2) dx( )

x+2=A+B(4x+2)
comparing the coefficients

1=4B 2=A4+2B

B=

2:A+% ie A=
4

B—

= 3 ax+2) N #2041 dx
2 4

I:%J\/2x2+2x+ldx+%j (4x+2)N2x% +2x+1 dx
IZE\/EI x2+x+l dx+z\/5.|. 2x+1) x2+x+l dx
2V 2 4 \ 2
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. 1
In the second integral, let u=x"+x+—

du=2x+1)dx

e T——% 2

\/_J“f X+—| +— dx+—j 2du

3
= h1 +—
2 2 2) T T T A

2

[\ ‘ L’)| :N\w

_ 3
3[12x+11 > 1. ., } 2(2 1]2
=—|= —(2x+1)"+1+—sinh” 2x+1) |+ —=| x" +x+—
Fl2 o VG A lagsinh @adD [ 2
3
(2x+1)1/(2x+1) +1+ s1nh "2x+1)+—— J’ \/_(2x2+2x+1)2

3 3 1 2
= ——(2x+DyJ(2x+1)" +1+—=sinh "' 2x+ 1)+ —(2x* +2x +1)?
s N w5 d )

2x+5 (x+2)
2  Evaluate / = 3 Evaluate /=
I\/ —2x+2 '[\/2)6 +2x+1
(2x+5)=A+Bi(x2—2x+2) (x+2)=A+Bi(2x2+2x+1)
dx dx
2x+5=A4+B(2x-2) x+2=A+B(4x+2)
comparing the coefficients comparing the coefficients
2=2B 5=4-2B 1=4B 2=A+2B
B=1 A=7
B:l 2:A+2 i.e.A:E
4 4 2
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j 2x+5 dr = J7+(2x 2) ]ZI (x+2) I

) a2 =2x+2 X =2x+2 N2x7 +2x+1
1 2x 2 3
] R R Seixe)
a2 =2x+2 a2 =2x+2 de
J’\/2x +2x+1
127'[\/12— dx J. \/& X 3 1 1 (4x+2)
(x=1)"—-1+2 2x+2 = x+—
2J\/2x2+2x+1 ) 'f\/Zx +2x+1

In th d integral, let u=x*—2x+2 :
1 the second Ttesrar, tet =X =X In the second integral, let

du=2x-2)dx 5
u=2x"+2x+1, du=(4x+2)dx
1 1
1w [ L s N
_1\2 = dx+— _du
Jax-1y+1 Ju 2ﬁj\/x2+x+l 4f¢;
2
1

2

[=7sinh ' (x=1)+ MT

2 _23ﬁj\/(x+1fl+1

=7sinh ' (x=1)+2u

3 1 1
=7sinh ™ (x=1)+24x* —2x+2 =2\/§J. - dx+—J.u 2 du
1 1
Xx+—| +=
2 4
S =
——3 sinh™ 2 +l ﬁ
22 141
2 2
= isinh’1(2x+1) +%\/2x2 +2x+1
22 4
Evaluate / = jx +2x+3
VX*+x+1
x2+2x+3:A(x2+x+1)+Bi(x2+x+1)+C
dx
X +2x+3=A(x* +x+1)+B(2x+1)+C
Comparing the coefficients of x°, x, constant term
: 1 . 3
1=4 2=A4+2B l.e.B:E 3=4A+B+C l.e.CZE
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'[x +2x+3

Vxt+x+1

(x2+x+l)+l(2x+l)+é
:J‘ 2 2 1
\/x2 +x+1
(x2+x+1 (2x+1)

:Iﬁ JJx +x+1 _'[\/x +x+1

N 2x+1 3 1
—I X +x+ dx+ I '—x +x+ +EJ‘—mdx

In the second integral, let u=x"+x+1, du=2x+1)dx

I\/(x+;j2i+ldx+ij\/1;du+;-[\/( 1)2_1 dx

j (x+%j2 +% dx+%ju_; du+%.f; dx

) e )
X+ — X+ —
2 P 4 2 n
2

1

2

X +x+1+Zsinh ~———=2 1w
5l

Yy 2

2

{2)64” x? +x+1+§sinh_l (23;:1)}+M+%sinh“ (2x+1)

IMPROPER INTEGRALS:
In defining a definite integral f: f (x)dx we dealt with a function f defined on a finite interval

[a, b] and we assumed that f does not have an infinite discontinuity. In this section we extend
the concept of a definite integral to the case where the interval is infinite and also to the case
where f has an infinite discontinuity in [a, b]. In either case the integral is called an improper

integral. One of the most important applications of this idea is probability distributions.
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TYPE I: INFINITE INTERVALS
Consider the infinite region A that lies under the curve y = 1/x2, above the x-axis, and to the
right of the line x = 1. One may think that, since 4 is infinite in extent, its area must be infinite,

but let’s take a closer look. The area of the part of S that lies to the left of the linex =t is

At—ftld— =1--
=] Far=-lli=1-5

Notice that A(t) < 1 no matter how large t is chosen.
VA

We also observe that
. . 1.
limA(®) = lim(1-p=1

The area of the shaded region approaches 1 as — o, so we say that the area of the infinite
region A is equal to 1 and we write

*1 t1
—dx = lim —dx =1
, x? t—oo J, x2

DEFINITION OF AN IMPROPER INTEGRAL OF TYPE I

(a) If fat f (x)dx exists for every number t > a, then

oo t
f f (x)dx = lim f f (x)dx
a t=co a
provided this limit exists (as a finite number).

(b) If [ £ (x)dx exists for every number ¢ < b, then

f_l;f (x)dx = tEr_noo ftbf (x)dx
provided this limit exists (as a finite number).
The improper integrals faoo f (x)dx and f_boo f (x)dx are called convergent if the corresponding
limit exists and divergent if the limit does not exist.

(c) If both faoo f (x)dx and f_aoof (x)dx are convergent, then we define
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f:f (x)dx = f_:f (x)dx + faoof (x)dx

In part (c) any real number a can be used.

Note:

1 The above integrals convergent if the associated limit exists and is a finite number and
divergent if the associated limit either doesn’t exist or it is infinity.

2 Any of the above improper integrals can be interpreted as an area provided that f is a
positive function. For instance, in case (a) if f(x) = 0 and the integral faoo f (x)dx is

convergent, then we define the area of the region S = {(x,y)|x =2 a,0 <y < f(x)}

A4S = [ f @

Y

This is appropriate because
faoof (x)dx is the limit as t - oo of

the area under the graph of f from a
to t.

0 a X
Determine whether the integral | 100( 1/x)dx is convergent or divergent.

According to Definition(a), we have

®1 dx = 1 £1 p The limit does not exist as a finite number
]1 x = tanc}ojl x and so the improper integral floo( 1/x)dx is
divergent.

= lim In |x|]¢
= tlim (Int—1In1)

= lim Int = o0
t—>o0

EXAMPLE: | 1°° xlz dxconverges f. 100 i dx diverges

YA VA

. infinite area
finite area

0 j X 0 1 X

Geometrically, this says that although the curves y = 1/x% and y = 1/x look very similar for

x > 0, the region under y = 1/x?2 to the right of x = 1 has finite area whereas the
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corresponding region under y = 1/x has infinite area.

Note that both 1/x? and 1/x approach 0 as x — o but 1/x? approaches 0 faster than 1/x.
The values of 1/x don’t decrease fast enough for its integral to have a finite value.
Solved Problems
1 Evaluate f_ooox e*dx.

We integrate by parts with

Using part (b) of Definition 1, we have w=x dv=e*dx sothat

0 0 du=dx, v=e*
f xeXdx = Jim f x e*dx
—00 —>—00 t
. 40 _ 0 x g We know thatet - 0 ast - —oo,
- tl}r_noo[xe Ie - tl}r_noo . e ax and by L'Hospital’s Rule we have
= lim [0 — te‘] — lim [e*]? lim tef = lim L
t—>—o0 t—>—o0 t>—00 t->—oc0 @t
= lim s
= lim [0 — te'] — Jim [1—ef] to—co —€
= lim (—e9) =0
=—0-1+0=-1 to-o
1 1 ) 1
2 Show that J —dx diverges 3 Show thatJ. — dx converges
o X X
1
The function — is continuous on (0,1] and w .
X I de _ M iabc
unbounded near 0, and we have 1 2 e w 1 x?
1 1 c
1 Lt Lt 1
J.—dx: +J. —dx = [——}
o X c—>0"" x c—>o x|
Lt Lt 1
=M o] -
c—>0 ¢ c— o c
Lt =1
= +[lnl—lnc]
c—>0 21
Therefore '[ — dx converges.
=0-In0 X
= 00
Therefore the given integral diverges

Note:

o0 d
1 To show that J f(x)dx diverges, it is enough to find one d in (0,0) for which J f(x) or
0 0

274 | Page
https://doi.org/10.5281/zenodo.15288161



j f(x)dx diverges.
d

0 d ©
2 But | f(x)dx converges,both | f(x)dx and | f(x)dx converges where d isin (0,).
g g
0 0 d

Tl .o
4 Show that I — dx is divergent
X
0

This is an integral over an infinite interval and it also contains a discontinuous integrand.
Hence we split the integral into two as follows:

€
x2

TL el
z[;dx—}[ ?dx+ dx

—— 8

1
) 1
First let us evaluate J. —dx
0

The function Lz is continuous on (0,1] and unbounded near 0, and we have

X

1 Lt 1
.[dex: . dex
0 X c—>0"" x

]
07 x],

N { 1}
c—0" c

=0

Since the first integral is divergent, by Note 1, given integral is divergent.

dx

3/2
X

5 Evaluate I
1

T dx
6 Evaluate | —
'1[ Nx
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< d Lt ¢+ 1
J‘sz _[ 3/2dx
| X I —>ooy Xx
Lt |
_ J‘x—s/zdx
F»wl
Lt 2 !
:r—>oo_—1/2}1
Lt [ 27
t—>o Jx |

The integral is convergent

7 Evaluate J—zdx
x“+4a
['s} Lt t
J- 24a dx = 2J- 2a 2dx
L X +4a 1> §x*+(2a)
Lt { . }’
= 2| tan~ —
t— a,
Lt
= 2 tanlL—O}
t—> o 2a
=2 tan"' o
_»x
2

The integral is convergent

The integral is convergent

https://doi.org/10.5281/zenodo.15288161

Lt 1
t—>o| 2(1+x)°

© Lt t
[
X t—>owy x
= Lt xdx
[ — 00y
~ Lt [ 2 !
Ct—>oo|1/2 ]
Lt
L]
t—> 1
Lt
[24-2]
t—>
= 0
The integral is divergent
8 Evaluatej dx
(1+x)’
F Lt
J. I(I+X) ldx
1 1+x) t—)oo (1+x)°
_ Lt J-(1+)C) Lt j~ 1
t — o (1+x) t—)ooo(l+x)
Lt |
j (1+x) 2 dx - [+ x)2ax
t—) t— o0y
L [a+rn] Le [aex?
t—>o -1 | tow 2 |

1

Lt

_ t 1
t—)oo[ 2(1+1)° 2}
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9 Determine whether the improper

3
. dx .
integral I— converges or diverges.
o Nx

(the integrand is infinite at lower limit)

3 Lt 3
J-%: I x dx
" X e— 0
Lt [ 52 3
B e—> OL/_ZL
Lt
B e—> 0[2\/5_2\/g}

- 23

The integral is convergent

11 Evaluate _[ x e dx
0

. Lt ¢ 5
J-xe dx = J.xe dx
0 t_>OOO

Put z=x", dz=2x dx

when x=0,z=0 & when x=t, z =1

K 2 Lt 1% .
Ixe'dx- — | e’dz
0 t—>00 24
Lt 1fe |
Tt w2 -1 0
Lt 1 2
= —|—e" +1
t—)oo2[e J

1
10 Evaluate Id—f
X
0

(the integrand is infinite at lower limit)

Lt [ 1}
= —1+—|>
e—>0 e

The integral is divergent

K 1
12 Evaluate | ————=dx
{ (1+x)x
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0 1 .
13 Prove that I —dx, a >0 converges if
X

and only if n>1.

t

I Lﬂdx

[ -
© X t—)oox

Casel: When n=1

Lt

=t_)oo[logt—loga]

=logowo—loga =
Casell: When n#1

8

g M,
(14 x)x t—>o1 (1+x)Wx
1
Pt - ’d :—d’ 2:
ut z \/; 'z 2\/; X, z-=Xx

when x=1,t=1; whenx=t,z:«/;

2 Le %
j—dx: zj —dz
L (l+x)x oo 3 (1+27)
Lt 3
= 2| tan™
t— o0 [an Zl
Lt

= 2 [tan"1 \/;—tan" 1]

t—

=2 [tan‘1 o0 —tan~

53]

Il
(SN

b
14 Prove that J —dx co

—X)

n<1. (the integrand is infinite at
limit)

b Lt b—e
J~ 1 dy = J~ 1
Y b-x en0 ! (b-x)

Casel: When n=1

b b—e
I ! dx = Lt I ! dx
* (b—x) e—>0"° (b-x)
Lt b—e
= 0[—10g(b—x)]a

Lt
= O[—loge+10g(b—a

E—>

=—log0+log(b—a)=

CaselIL: When n#1

https://doi.org/10.5281/zenodo.15288161

11:|

nverges iff

upper

)]
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o] 1 Lt t .
j —dx = I x"dx b 1
X t—>oy j dx = j (b—x)"dx
* (b—x)" e—>0
— Lt xl_” t b—e
_t—>oo l_n ) _ Lt (b—x)I’”
e—>0 —(1-n)
Sub case (i) when n<1,1-n>0
1 Lt . -
« =— e "—(b-a)™
J‘de: Lt 1 zl‘"_a""] n—le—)O[ ( ) ]
° X" t—>ol—n

Sub case (i) when n<1,1-n>0

1-n j). — Lt -1 I:Elfn _(b_a)l—n]
(b— x)" T e 01-n
Sub case (ii) when n>1, ie.n—1>0 ¢
ol Lt [ x7 2—1 [(b—a)lf”}zﬁnite
° X" t—>oll-n

Sub case (ii) when n>1, ie.n—1>0

t
_ L {_L 11} j’. Lt 111 1
t—>o n-1x""], ) b= x) ] =

e—)On—l € (b—a)"

_ Lr -1 L_L 1 1

n—1 (b—a)""

15 Determine whether the integral j dx is convergent or divergent.

x’ +4

1 t
= —{tan1 5 tan” O} .. The integral is convergent
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16 Determine whether I xe " dx is convergent or divergent.
Since both the limits are infinite, we split the integral such that each integral has one infinite
limit as follows:

0 0 0

2 ) 2
j xexdx:I xexdx+I xe " dx
—0 —0 0

_ ' Le % . _ 2 Lt ¢ .
Consider I xe " dx= J~ xe " dx Consider J. xe " dx = I xe " dx
- [ ——0 ¢ 0 t—>00
Ll p 1 2 Lt { 1 2
LT - el
t—>—0 72 t—>o00 2
Lt 1 2 0 Lt 2 t
S o ety
t—>—0 2 t t—ow 2 0
Lt 1 2 Lt 1 2
- —~[1-¢"] = ~~|e 1]
t—>-—0 2 t—>owo 2
1 1 . .
=—5 [smcee =O] =§ [smcee —0]
e} . 0 ) 0 . 1 1
Therefore I xe " dx= j xe " dx+I xe " dx=——+—=0
it bt 0 2 2
o 1
17. Evaluate|_ —dx.
It’s convenient to choosea = 0 :
j Ll f R f Ly
= X
oo 1+ x? x oo 1+ x? o 1+ x? X
We must now evaluate the integrals on the right side separately:
f‘” 1 P ft dx JO 1 4 y fo dx
X = X =
o 1+x2 tggool+x2 —e 1+ X2 t—lr—noot 1+x2
= lim tan™! x]} = lim tan~1 x]?
= lim (tan"!t — tan10) = lim (tan™10 — tan~1¢)
= lim tan"'t¢ —o— (T
t—o0 =0 ( 2)
s
_n —2
T2

Since both of these integrals are convergent, the given integral is convergent and
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area = mw

X

Note: Since 1/(1 + x?) > 0, the given improper integral can be interpreted as the area of the
infinite region that lies under the curve y = 1/(1 + x?) and above the x-axis

18 For what values of p is the integral | 100 xll’ dx convergent?

If p = 1, then it is proved that the integral | 100 % dx is divergent.

let’s assume that p > 1. Then

oo 1 t
j —dx = lim f x Pdx
1 xP t—oo 1

x—p+1
= lim

too—p + 1

et Ifp>1,then p —1>0, soas
b= t >0, tPloo and 1/tP7! - 0.
1 1

- JH&E [tp—l —1]

i 1
= lim —[0 —1]

1 - If p > 1, the integral converges.
p—1

let’s assume that p < 1. Then

j —dx = lim J xPdx
1 xp t—oo 1

x—p+1
=tli_>n30_p+1]§;§ ifp < 1,thenp —1 < 0 and so
) 1 1 1 _-p
- thlﬂtﬁ [tp—1 —1] tp-1 t S ®ast > ®
1
= Jim 1-p [ —1]
- If p <1, the integral diverges.
= oC

flooxipdx is convergent if p > 1 and divergentifp < 1.
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TYPE 2: DISCONTINUOUS INTEGRANDS

Suppose that f is a positive continuous function defined on a finite interval [a, b) but has a
vertical asymptote at b. Let S be the unbounded region under the graph of f and above the x-
axis between aand b. (For Type 1 integrals, the regions extended indefinitely in a.

DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 2:

(a) If f is continuous on [a, b) and is discontinuous at b, then

f:f (x)dx = tlirgl_ fatf (x)dx and f has vertical asymptotes at b, if this limit exists .
(b) If f is continuous on (a, b] and is discontinuous at a, then

f: f (x)dx = Jim, ) tb f (x)dx and f has vertical asymptotes at q, if this limit exists .
—-a

(c) If f has a discontinuity at ¢, where a < ¢ < b, and both facf (x)dx and fcbf (x)dx are

convergent, then we define

b
f f(x)dx = (x)dx +f f (x)dx

A

The given integral is improper because f(x) = 1/4/x — 2 has the vertical asymptote x = 2.

Example: Find fzs —=d

Therefore by definition,
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= tlir?+2(\/§—\/t—2)
=2+/3

VA

of

Thus the given improper integral is convergent and, since the integrand is positive, we can
interpret the value of the integral as the area of the shaded region in Figure.

. 2 .
Example: Determine whether fon 2 sec xdx converges or diverges.

The given integral is improper because lim sec x = co. Therefore by definition

t-’;

T

t
2
fsecxdxz lim fsec xdx
0 t=>(m/2)” J,

= lim_ In |secx + tanx|]}
t=(m/2)~

= H%;Tn/nz)_[ In(sect+ tant)-In1] =

because sect - coand tant —» cast — (m/2)".
Thus the given improper integral is divergent.

Example: Evaluate f03 % if possible.

Observe that the line x = 1 is a vertical asymptote of the integrand. Since it occurs in the
middle of the interval [0, 3 ]. Therefore by definition

f3 dx _fl dx +f3 dx
ox—1 Jox—1") x-1

Where
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J‘l dx y ft dx
o x—1 o) x—1

_ 1t

= [lim In |x —1[Jo

= Jim (Inft = 1] = In| = 1])

= tlir{l_ In (1—t)=—00, log0=—o0
Thus fol d x/(x — 1) is divergent.

This implies that °d x/(x — 1) is divergent. [We do not need to evaluate °d x/(x—1)
0 8 1

If we had not noticed the asymptote x = 1 in the above problem, then we might have made the
following erroneous calculation:

3 dx
f =Injx—13=m2-In1=In2
0o Xx—1

This is wrong because the integral is improper and must be calculated in terms of limits.

3
1 L.
Example: Show that I — dx is divergent
X
-2

This integrand is not continuous at x = 0 and hence split the integral as follows:

X

j %dx:} %dx+j' de
) )

. _— ¢l Lt ¢ 1
Consider the flrstlntegralj —dx = I —dx
X t—>0- 7 x
22
t—0- | 2x 5
L 11
t—>0-| 27 8
= —00

Since the first integral is divergent, the entire integral is divergent.

A COMPARISON TEST FOR IMPROPER INTEGRALS

Sometimes it is impossible to find the exact value of an improper integral and yet it is
important to know whether it is convergent or divergent. In such cases the following theorem
will be useful. Although we state it for Typel integrals, a similar theorem is true for Type 2

284 | Page
https://doi.org/10.5281/zenodo.15288161



integrals.
COMPARISON THEOREM:

Suppose that f and g are continuous functions with f(x) = g(x) = 0 for x > a.

(a) If faoo f (x)dx is convergent, then faoo g (x)dx is convergent.

(b) If faoo g (x)dx is divergent, then faoo f (x)dx is divergent.

This is explained in the following Figure. If the area under the top curve y = f(x) is finite,
then so is the area under the bottom curve = g(x) . And if the area under y = g(x) is infinite,
then so is the area under f(x) .

[Note that the reverse is not necessarily true: If faoo g (x)dx is convergent, f:o f (x)dx may or

may not be convergent, and if faoo f (x)dx is divergent, faoo g (x)dx may or may not be

divergent.]

0 a X

Example: Show that [ OOO e *" dx is convergent.

We can’t evaluate the integral directly because the antiderivative of e~* is notan elementary

[els) 1 [o'e]
2 2 2
f e * dxzf e ™* dx+f e ™ dx
0 0 1

YA

function. We write

0 l X

and observe that the first integral on the right-hand side is just an ordinary definite integral.
In the second integral we use the fact that for x > 1 we have x* > x, so —x? < —x and

therefore e < e, (See Figure .) The integral of e™* is easy to evaluate:
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© t
J. e *dx = lim f e dx = lim (et—eH)=e?
1 1 —00

t—>oo

. 0 _,2 .
Therefore by comparison theorem, fl e™™ dx is convergent.

—x11
Also fole_x dx = [e—l] =1-¢!
—+40

. 1 _,2 .
Therefore by comparison theorem, fo e~ dx is convergent.
0 02 .
therefore fo e™™ dx is convergent

—X

e

Example: show that by comparison test, J
1

dx is convergent.
X

To prove the integral is convergent, we need a larger integrand. From the given limit

x>1
ie. l <1
X
<e, Since e >0
X
Hence J' dx <j e dx ... (D)
1 X 1
) 2 Lt &
Consider I e’ dx = j e dx
1 1

- S [eee]

= [e‘1] and hence convergent.

—X

e

Hence from (1) j

1

dx is convergent
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Example: show that by comparison test, I e dx is convergent.
1

To prove the integral is convergent, we need a larger integrand.
We know that e™* is decreasing function and hence whenever x, > x, then e <e ™

. . . . —_ ‘2 —
From the given limit, we have x > 1 ie. x* > x and hence ¢ <e™*. .

Hence T e dx < T e dx ... (1)
1 1

But we know that j e dx=e"', which is convergent and hence from (1), by comparison test
1

X

we conclude that I e dx is convergent.

1

Moments and Centres of Gravity

Moment is a quantity which measures the tendency of y
mass to produce rotation. It is used to define a point /
called the centre of gravity of a set of points in a plane.

The moment of the point mass about the y—axis is

[ ]
(x¥)
defined to be mx. 1

Suppose that there are several point masses whose
masses are m,,m,,...m, located at the respective points

(%,1)-(x2,3,)5--(X,,,) inaplane. The moment M moment = mx
of the collection of all point masses about the y—axis
is the sum of moments of all point masses. ..

If M, =0, then the point masses is said to be in

equilibrium.

Similarly, we can define the moment of point masses m,,m,,...m, about the x— axis by setting

M =my +..+my,.
Now let m =m, +m, +....+ m, be the combined mass of all point masses considered and let us

take a point mass with mass m at ()_c,f), then its moment about the x axis and y axisis M,
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and M respectively.

My:mller ..... MY ond )_/:Mx:mlyl+....+mnyn
m m m m

Therefore x =

The point ()_c,f) is called the centre of gravity or centroid of the given collection of point masses.

Find the moments and centre of gravity of objects with masses 2, 3, 6 and 8 located ate
the points (2,1), (—1,3), (3,-2) and (3,0) respectively.

The moments are

M =mx +...+mx,=2(2)+3(-1)+6(3)+8(3) =43 and

y
M =my +.+my =2(1)+33)+6(-2)+8(0)=-1

M _
Since m=2+3+6+8=19, we have )?:—y:ﬁ and y = M, :—1
m 19 m 19

Definition: Let / and g be continuous on [a,b], with g(x) < f(x) for a<x<bh and let R be
the region between the graphs of f and g on [a,b]. Then the moment M _of R aboutthe x

b
axis is givenby M = %j[f(x)]2 —[g(x)]2 dx and the moment M of R aboutthe y axisis

a

givenby M = Ix[f(x) - g(x)]dx .

Note: If R has positive area 4, then the centre of mass or centre of gravity of R is the point

M M

X,y )definedby x=—= and y=—=.
(x.7) yx=— y==

1 Find the moment about the y axis of the y -

X)=C

rectangle R bounded by the lines x=a, x=5,

y=0and y=c. a+ b <
Here we have f(x)=c and g(x)=0. Therefore i——u;r-——___' G

the height of the rectangle is ¢. So c

b z x
M, = [x[f(x)-g(x)kx 0 a gx)=0 b
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= j':x[c—O]dx

=C| —
2 a

< a)
=c(b—a)b;a

2 Let R be the semicircular region bounded

by the y axis and the graphs of f(x)=+r’—x’ Fx)=Afrt =x
and g(x)=—r’—x* for 0<x<r. Find the '
moments.

The moment M of R aboutthe x axisis o

M, =%.abf[f(96)]2—[g(96)]2 dx 0 r
M, =3[ =) (e =0

g(x) =—frt —x*

The moment M of R aboutthe y axisis

Let »*—x?>=u. Then —2xdx=du
when x=0, u =#*

M, = [x[f(x) - g
= 2:|;x r? —x*dx

when x=r,u=0

0
= —.T \/;a’u

. o1
Since the area 4 of R is 572'7”2 , we have
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¥
xX=—>== 32:ﬂ and f:M‘:O
A #r 3z A
2
MASS AND CENTRE OF MASS

3. Find the mass M and the centre of mass x of a rod lying on the x— axis over the

interval [1,2] whose density function is given by 5(x)=2+3x"

We know that Mass Therefore center of mass
b
= j 5(x)dx b
a [x80x) ax
2 = 0 a
= 2+3x)dx X = M -
! ( ) j S(x)dx

[2x+x }

(4+8) (2+1) _[x.é'(x) dxzjx.(2+3x2) dx

~16-
4
57
4
57
Y -
_)_C: O:izg
M 9 12

A lamina is a thin flat sheet having uniform thickness. The centre of gravity of a lamina is the
point where it balances perfectly, i.e. the lamina’s centre of mass.

Centre of gravity of plane area bounded by the curve y = f(x), the x axis and the ordinates
x=a and x=>b.
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) B(ydx)

_[ X ( ydx) y b
X = .f ydx
J.ydx If the area is
“ symmetrical about x
X=

X=a

axis, then y =0.

Centre of gravity of plane area bounded by the curve x = f(y), the y axis and the abscissae

y=a and y=».
y
tx
I E(xdy) b y=b
=T Iy(xdy) )
IXdy Y=t G- /
a I xdy
If the area is a y=a k
symmetrical about y
axis, then x =0. .

Cerntre of gravity of the area enclosed between two curves
y
WAV
J.x(yl_y2)dx — J‘ b (yl yz)dx
x=2 2 7 y=
,[(y1_y2)dx I(yl—yz)dx
The limit of integration being the values of x for )
points of intersection the o
A and B
Here P(x,y,) and Q(x,,)

Centre of gravity of the sectorial area bounded by the curve » = f(f) and the radii vectors

O=a and 6=F.
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i s a]
~ [ cos0do ~[r*sinodo ]
X = Q )_} = a i A
J.rzdé’ Irzde g=q
X
8]
4 Find the position of the centroid of y v =5x—x
the area bounded by the curve y=5x—x’
and the x-axis.
Let C()_C,J_/) be the coordinates of the
b
Ix(ydx)
centroid. Then ¥ = 4+———
X
J ydx (0,0) (5.0)
S a
5x—x)d
- ’([)C( X—X ) X S )
== ] J.E(y)dx
I(Sx—x )dx =_0
0 y 2
3 4P j(y)dx
[5)6_)6} )
3 4 s (5x—x°
- 5 S 3 j( )(Sx—xz)dx
x X 2
[52‘3} =t
0 2
5x— d.
625 625 l(x x*)dx
_ 3 4
125 125
o 3 j.(25x2+x4 1Ox3)dx
2 3
625 0 55 , from X
12 —
~J95 6
1275 3 5 4P
6 6 | 25x x__le
_5 2500 3 5 4 |
2 __6 [3125 3125 6250
2501 3 5 4
_2
2
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5 Find the position of the centroid of the
area bounded by the curve y = 3x?, the x-axis

and the ordinates
x=0andx = 2.

Let C(X,y) be the coordinates of the centroid.

Then x =<4 x=0 x=2
Iydx
2a 21 d
!x(?axz)dx )_/:!22()’) X
=L J
I(3x2)dx ?.).(y) y
0 2 (352
[3x4}2 _([( ;C )(3x2)dx
4 o = 2
e J(357)ax
5] "’
48 S J(ox*)dx
[4} =~ g > Jrom¥

6  Find the centre of gravity of a plane lamina of uniform density in the form of a

quadrant of an ellipse.
2 2

Let the equation of ellipse be x_2 + % =1 Bl (0,b)
a

The parametric equations are
X =acost, y =>bsint

dx =—asintdt, dy =bcostdt

. Vs
Here @ varies from 0 to E

https://doi.org/10.5281/zenodo.15288161
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Z[x(ydx)

b
I ydx

X =

acost.bsint.(—asint)dt

O 0 [y

H
[bsint.(-asinz)dt
0

a | cost.sin’ tdt

S o | N

sin’ ¢dt

e —_
NN S 0 |y

o |

% 0u)

j- ydx

<

b*sin’ t.(—asint)dt

N | =

bsint.(—asint)dt

sin’ tdt

N | S

SN N[Ny e— o[y — o

sin’ tdt

N | S ce—mpoy
o

|98)
—_—

|
oy

K& wi-

7  Find the centre of gravity of a plane lamina bounded by x axis and the part of the

ellipse for which y is positive.

(0.b) —+=1

a b
[ A

[-ﬂJDJ [:1,0]
X ,[ % (velx)
Let the equation of ellipse be — +==1 P ==
a a
I ydx

The parametric equations are
X =acost, y =bsint

dx =—asintdt,
Here @ varies from 0 to .

dy =bcostdt

—a

1 [ sin® t.(-asint)dt
2 0

j bsint.(—asint)dt
0

https://doi.org/10.5281/zenodo.15288161
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Since the area is symmetric about y axis.

Hence
Ix(ydx)
x=—2——=0

j ydx

b % .
—.2Is1n tdt
2 0

T

2_[ sin? ¢dt
0

8 Find the centre of gravity of the area between the curve y =cosx from x=0 to

xX= —% bounded by the line y =0.

Il
=

The equation of the curve is y =cosx

x(ydx)

O 0 | N

=I
Il

ydx

O v | N

X CcOs xdx

0 [N

cos xdx

O 0 [N ©

[(x)(sin x) — (1)(—cos x) ]2

[sin x]of

<

—~~
5
=
~

S VR

[SLESEERCIEN | O ‘\<

&
S

cos® xdx

N | —
O t—=—v [y

cos xdx

O o [N

3
Jl + cos 2xdx
0

N

cos xdx

O 0 | N

https://doi.org/10.5281/zenodo.15288161
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T

[xsinx+cos x]oE

[sinx]oE
Z1+0-1
_2
1—-0
T,
2

9 Find the centroid of the cardioid
r=a(l+cosH)

Since the curve is symmetrical about the
initial line =0, y =0.

2?1/3 cos6d6
ol
J.rzdﬁ

a

Nr = 2 J. r cos0do
3

7> cos0do

Il
\S]
X

I

[\®)

X 3
WIN W[

Oty Oy

a’(1+cos0)’ cos0dO

(OSRINN

But Icos"@d@ =0 when n is odd

/2

Also Icos"@d@ ZI cos” 8d@ when n is even

0

a3f [COS@+COS4 6 +3cos’ 6+ 3cos’ 9} do
0

r=a(l+cosb)

zzxazj (1+cos8)’do

0

:2a2I l+cos’@+2cosO db
0

3
=2a*|[0] +2(0)+2 j cos’> 6 do
0

https://doi.org/10.5281/zenodo.15288161
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s

2
:a3ix2j [cos4é?+3c0529]d49
3 0
BN EEP:
422 22
8 ol 3lr g1
3 422 22

5 |15
xa’x—| —
4| 4

8
3
S s
2

8
3
8

wa

10 Find the centroid of the area of a loop
of the lemniscate > = ¢’ cos 20

Since the curve is symmetrical about the initial
line. Therefore y =0.

2'ﬁ[ 5 0800 ijkrg’cos@dﬁ
X=_2¢ ; — _Zﬁ
£ r’do T a6
.

> cos0do

Il

o
[OSHI )
O C——yn |y

3

a’(cos26)? cosO dO

|
[\
X
|
O e | N

[1—2sin2 9]3 cosO do

Il

| &

N

(98]
Stk N

Let \[2sin@=sin @, then 2 cos0dO = cos gdg

o

~N

Il
e [y

r*dé

&N

2
a

cos26 do

—r N

N

2a°

cos26 do

2 sin26 |4
2 0

Sl n |y *
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When 0 =0, 0=sing, ie. ¢=0 P [1}

V4 T 2
When 0=—, 1=sing, ie. ¢=—
en 2 sing, ie. ¢ 5 _
L ‘;.i [l—sin2 ¢]§ cos¢ de
32
Lo ] eos rd’
=—=a cos" ¢ do ekl
W2 0 Therefore x = 4\/25 = %
a
4 plz
W2 4272 ie. (f,y):(—”“ ,oj
ra’ 42

Centre of gravity of a solid revolution

Centre of gravity of a solid generated by b .
the revolution of the area enclosed by the Ix (y “dx ) igifg (t)}fliesl((;)l?liit(l)lr?
curve y = f(x), the x axis and the X =+ lies on the
. _ _ 2
orfhnates x=a and x=b, about the x- _[y dx x axis, 7=0.
axis. ’
Centre of gravity of a solid generated by b 5 .
the revolution of the area enclosed by the Iy (x dx) S";_Cg t}fle CGlof'the
curvex = f(y), the y axis and the y =4 S0 lligs Zilvgh‘;tlon
5 _ _ _ 2
ab.sassae y=a and y =b, about the y J-x dx y axis, ¥ =0.
axis. a
Centre of gravity of a solid generated by b 5 5
the revolution of the area enclosed by any Ix(Y1 W ) dx
two given curves about the x-axis,then | X =4 y=0
where a and b are the abscissae of the J(yf — yzz)dx
common points of intersection. a
Centre of gravity of a solid generated by b .,
the revolution of the area enclosed by any IY(xl —X ) dx
two given curves about the y -axis, then y =" =0
where a and b are the ordinates of the J-(x]2 — xzz)dx
common points of intersection. “
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11 Find the centre of gravity of the segment of
a sphere of radius a cut off by a plane ata
distance ¢ from the centre, and deduce the CG
of a hemisphere.

The sphere is generated by rotating the circle
x> +3° =a’ about x -axis. By symmetry of the given
solid, y =0.

$
Il
O C—
=
—~
N}
)
I
=
S
N—"
>

1 2 2
:Z(a—c) (a+c)

Lll(a—c)z(ach)2 _é(a+c)2

;(a—c)2(2a+c) 4Qa+c)

Therefore x =

In case the segment is a hemisphere, ¢ =0. Therefore x = %a,

8] C B

3 3
=|la’ ———-ad’c+—
24’ 5 c’
= —ac+—
3 3

= %[2513 —3a’c +c3]

(a.0) ®

:%(2a+c)(az2 —2ac+c2)

= %(251 +c)a—c)’

<
I
(e)

https://doi.org/10.5281/zenodo.15288161
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12 Find the centre of gravity of the volume
formed by the revolution of the portion of the

parabola y’ =4ax cut off by the ordinate x =/
about the x -axis.

By symmetry of the given solid, y =0.

Ix(yz)dx

7
I ydx
0

X =

;'Lx(4ax)dx

31‘4ax dx
0

4a jz-xz dx
— 0

4a ix dx
0

13 Find the centre of gravity of a solid
right circular cone of height /.

Let o be the semi vertical angle of the cone.
The cone is generated by revolving the right
triangle OAC about x axis. OA being the line
y=mx, where m=tana.

By symmetry of the given solid, y =0.

R
v =dax
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X ="
Imzxzdx
0
h
Ix3dx
X = 2
J.xzdx
0
4
X = ; 2
3 0
_ 3n* 3h
X == —
4 n? 4

Hydrostatic Force

A particle under water experiences pressure due
to the weight of the water above. Consider a
horizontal plate of area 4 sq. ft. at a depth of x
feet below. The water directly above the plate
exerts a constant force F equal to its weight on
the plate.

This force is called hydrostatic force.

water level

Suppose a vertical plate is submerged in water and we want to know the force that is exerted

on the plate due to the pressure of the water. Hence the hydrostatic force on a vertical plate is

not constant, since the pressure will vary with depth.

https://doi.org/10.5281/zenodo.15288161
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The hydrostatic pressure at x meters below the water level is given by, P = pgx where

p = the density of the water = 1000 kg/m3

g =the gravitational acceleration =9.81 m/s2.

x = the distance between water level to a point at which pressure is measured

Suppose that a constant pressure P is acting on a surface with area A. Then the hydrostatic force
that acts on the area s, F = PA

Note: All measurements should be in meters or convert into meters. If water is replaced by
some other fluid, then the number 1000 kg/m3 must be replaced by the weight of that fluid.

Solved Problems

1 Determine the hydrostatic force on water level
the following isosceles triangular plate -~ - .. | T
. . . — . r-"f' '\_‘“'_'Ifh ar
that is submerged vertically in water as = M AT BN
Fanl .
shown below: o _“':_“ii‘ e o —
e < 4m j,:_f"_,:’:
— s £ -
- [ e
o TE . o \.—1“:_ v
-~ L -
e B O Ry
— Al Bl T
h‘I'_l"-)‘_\k‘_“’_FAl-‘.\\.l-"‘-’_F\-,r‘. _,—"___H_N.-—
- P — o

First let us fix the axis system. Let the water level be y—axis and positive x —axis towards the

depth of the water. Hence x =4 corresponds to the depth of the tip of the triangle.

Consider a strip of width Ax and length 2a in the plate. We use the property of similar
triangles to determine a.
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V-axis

since the pressure on this strip is constant,
the pressure is given by

P=pgx
=1000x9.81x x
=9810x

X-axis

The area of each strip is 2aAx

and the hydrostatic force on each strip is, F' = P4 =(9810x)(2aAx)= 19620x(3 - %xij

Hence the hydrostatic force of the plate is F = Z 19620x, (3 —%xl.ij.

i
i=1

Taking the limit, we have

Lt &
F= D" 19620x, (3—§x,.]mi
n— o ‘5 4

t 3
=j 19620x(3—2xjdx

0

4
=19620j (3x—§x2jdx
) 4
2 374
_19620{ 2X _ X
2 4

= 19620{ﬁ—ﬁ}
2 4

=156960N

2 Find the hydrostatic force on a circular plate of radius 2m that is submerged 6 meters
in the water.
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First let us fix the axis system. Let the origin of the axis is at the centre of the plate. Hence the
water level is parallel to y—axis. Therefore the plate is at 6m depth and the centre is at 8m

depth.

Consider a rectangular strip of width Ax and its lengthis 24 —x*
since the pressure on this strip is constant, the pressure is given by
P=pgx

=1000%9.81x(8—x)
=9810(8 — x)

The area of each strip is 24/4 — x> .Ax
and the hydrostatic force on each strip is,

F=Pd= (9810)(8—x)(2 4—x .Ax) _ 19620(8—x)(x/4—_x2)Ax

Hence the hydrostatic force of the plate is 7 =" 19620(8 —xi)(«/4 ~x )Ax,.

i=l1

Taking the limit, we have

Fo M i19620(8—xi)(«/4—x[2)Axi

n—0 5

F= j 19620(8—x)(ﬂ) dx
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2 2
F=19620J~ 8J4—x> dx—19620 j x4 —x? dx
-2 -2

2
F =19620x8x2 J‘ V4—x* dx—19620 (0), {By odd and even integral property}
0

2
F =313920 B\M—xz +gsin‘1 ﬂ
0

~313920 [2sin-‘ 1]
=3139207

3 Anisosceles triangular plate 3m tall and 1.5m wide is located on a vertical wall of a

swimming pool, the bottom vertex 6m below water level. Find the hydrostatic force F
on the plate.

For our convenience we place the origin at the bottom vertex of the plate. Then the plate
extends from x=0 to x =3. Therefore the depth at a given x is 6—x.

X water level
—_— _-—-__ -
- L\x\-\‘ﬁ - =
[ —— -
- -""_'_,_,.,—*— -
__"'5"5. _'_,_,.,-\_
_F"\_‘-__'\-\_
- —_— - - =
- -
N —_ T_ T
.-"_" .
. —
=
- e — =
" — —
T
- — ~—--
—_ e
— — —
[ — H""—_|_
_ —_ . — =
— e — - =
e e — T
— _'_\_ _—
_ — _ Te— b=
T T
_H-—-"_\-"‘—__
R

- e - .
v axis
]

Consider a strip AB of length w. Half of the length is g From the properties of isosceles

triangles, we have
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Consider a strip of width Ax and its length is x as explained above.
since the pressure on this strip is constant, the pressure is given by

P=pgx
=1000%x9.81x(6—x)
=9810(6—x)

The area of each strip is W.MI%.AX and the hydrostatic force on each strip is,

F =PA:9810(6—x)(§AxJ=4905(6x—x2)Ax

n

Hence the hydrostatic force of the plate is F = z 4905 (6x,, —x )Axi

i=l1

Taking the limit, we have

Lt
F= " Z 4905(6x, —x ) Ax,

F = 4905} (6x—x2)dx
0

3 3
- 4905{3)3 —%}

0
=4905[27-9]
= 88290N
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4 Suppose the triangular plate is placed
with the vertex at the top. Again consider the
origin at the bottom. Hence for a given x the
depth from the water level is 6—x.

From the properties of triangles

3—x

Hence the width w(x) would be

Consider a strip of width Ax and its length is

3_Tx as explained above.

since the pressure on this strip is constant, the
pressure is given by

P=pgx
=1000%x9.81x(6—x)
=9810(6 —x)

The area of each strip is w.Ax = 3_TxAx and the

each

F:PA:9810(6—x)(3_Txij

hydrostatic  force  on strip s,

=4905(6—x)(3—x)Ax
=4905(18—9x+x” ) Ax
Hence the hydrostatic force of the plate is

F= Z 4905(18-9x, +x," ) Ax,
i=lI

1

water level

Taking the limit, we have the required
force

Fo M i4905(18—9xi+x,.2)Ax‘

n—> o0 '

i=1

F:4905j (18—9x+x2)dx
0

X2 X3 }
=4905| 18x -9+
2 3

0
=4905[54—§+ﬁ}
23

=110362.5N
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50 meter

5. Adam has the shape as shown here. The
height is 20m and the width is 50m at the top
and 30m at the bottom. Find the forceonthe @ —

dam due to hydrostatic pressure if the water - - - - - - - - —-—----+

level is 4m from the top of thedam. =~ . -~ -~ -"——-—----—- —

30 meter
For our convenience we place the origin at x
the bottom vertex of the plate. 10 15 15 c 1o
4
Then the water level of the dam extends
from x=0 to x=16. L I B

Therefore the depth ata given x is 16—x. [ ——— — — — -

Consider a strip of length a. From the .—__ —————————— y

properties of isosceles triangles, we have — y
a 10
x 20
X
a=—
2

Consider a strip of width Ax and its length is w as explained above. Therefore

w=2(a+15)

:2(&15)
2

=x+30

since the pressure on this strip is constant, the pressure is given by
P=pgx
=1000x9.81x (16 —x)
=9810(16—x)
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The area of each strip is w.Ax=(x+30).Ax and the hydrostatic force on each strip is,
F = PA=9810(16—x)(x+30) Ax =9810(480 - 14x—x* ) Ax

Hence the hydrostatic force of the plate is F = Z 9810(480—14)@ —x )Ax

i
i=1

Taking the limit, we have

Lty R
F= " Zl 9810(480—14x, —x7 ) Ax,

F =9810 lf (480—14x—x2)dx
0

3 16
- 9810[480x—7x2 —%}

0

=9810[7680—1792-1365]

=44370630N
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UNIT V - MULTIPLE INTEGRALS

Introduction

The concept of multiple integrals is important in real life situations like evaluating the area of a region,
volume of a solid where usual formulas are not useful. Also in Mechanics, it will be essential in evaluating
mass, centre of gravity, moment of inertia of plane lamina and solid of volume V.

Double Integrals

b n
We know that the J-f(x)dx is defined as the limit of the sum Zéxif(xl.) as n—oo where the range b—a
a i=1
is divided into » parts and x,, x,, ...,x, are values of x lying in each interval ox,. A double integral is its
counterpart in two dimensions.

Let f(x,y) be a single valued and bounded

y
function of two variables in x,y defined in a closed e
region R. Divided the region into n sub-regions = o
say, 64,04,,..,04,. Let (x,y) be any point ' axt
| L

within the elementary area 54,. When n — oo, the L\ i
limit of sum " 54,1 (x,,y,) = [[.£(x,)dA T

i=l R x

o

If the region R is bounded by the curves x=x, x=x,, y=), y=y, then

[[ £y dx dy =j j S(x,y) dx dy

NN
Evaluation of Double Integrals

(@) If x,,x,, y,,», are constants, then the order of integration is immaterial, provided the limits of
integration are changed accordingly. Thus

Y2 X

[[ £y dxdy=T j Syydyde=| [ f(xy)dxdy

(b) If x, x, are functions of y (i.e.x, =4(»), x,=¢,(»)) and let y,, y, are constants, then

Y2 X

[[reeyyacdy=] [ rxy)dxdy

NN

(c) If y, y, are functions of x (i.e. Y =¢(x), », =¢2(x)) and let x,, x, are constants, then

[[feyyacdy=] [ fexy)dy dx
R XN
From the above we observe that the integration is to be performed w.r.t. that variable having variable
limits first and finally w.r.t the variable with constant limits.
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Rule: The limits of the inner integral are functions of x then the first integration is with respect to y and
vice versa.

To evaluate I I f(x,y)dx dy= I {I f(x,») dx} dy ,we integrate f(x,y) w.r.t x, treating y asa

nox N X

constant, getting a function of y (or constant), say F(y) and then F(y) is integrated w.r.t. y.

Note: If f(x,y)=1, then the double integral J.J.f(x, v) dx dy gives the area of 4.
A

Triple Integrals

Let f(x,y,z) be defined for all points in a finite region V' of space. Let 6xdydz be an elementary volume
of the region ' surrounding the points (x, y,z). Then

Lt
ox — OZZZ f(x,y,z)0x0ydz is written as J.J"[ f(x,y,z)dxdydz which is called the triple integral of

o
—>O

f(x,y,z) over the region J.

If the region V' is bounded by the surfaces x=x,, x=x,, y=y, y=»,, z=z, z=z, then

HIf(x yaydsdvdz= | [ [ 0o,z dvdy e

a oM
Evaluation of Triple Integrals

(@) If x, x,, ¥, »,, z,, z, are all constants, then the order of integration is immaterial, provided the limits
of integration are changed accordingly. Thus

Y2 X

j [] £ (e, y,2)dxdydz = j j j f(x,v,2) dz dy dx = j [ | reey.z) drdydz

LT S | N N

(b) If z,z, are functions of x&y(ie.z, =¢(x,y), z,=¢(x,»)); »,», are functions of

X (i.e. y =y (x), y,= 1//2(x)) while x,, x, are constants, then integration is to be performed first w.r.t. z,
then w.r.t. y and finally w.r.t. x. Thus
X ¥
j [[ £ e,y 2)dxdydz = j j j fGoy,2) dzdy de=| | j F(x,v,2) dz dy dx

XN 4 xov 4

Note: If f(x,y,z)=1, then the triple integral HI f(x,y,z)dxdydz gives the volume of the region V.
vV
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1 Evaluate

1 2
3 Evaluate: I J- x(x+y)dy dx
0 1

Solved Problems

Double Integration in Cartesian coordinates

S —

L

1 2
Let I = J j x(x+y)dy dx
0 1

2

2
dx
2 :|1

https://doi.org/10.5281/zenodo.15288481

dx dy

3 2
2 Evaluatej J'
2 1

=log 2 [log 3 - log 2]
=log2 .log 3/2

logl=0, loga—logh= log%
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5 Evaluate:

—
(¢°]
—
—
1
© Ly 0
oS,

7 Evaluate

S o |y
S o |y

o—ly

|

J x(x* + %) dy dx
0

x(x* +y%) dy dx

O 0 [N

sin(x+y)dx dy =

sin(x+ y) dx dy

[cos(x+y)]0% dy

V4
{cos[z + y] —Cos y} dy

[—sin y—cos y] dy

O [N O 0[N

I
O 0 [N

/4

= [cos y—sin y]2

= [(0-D-(1-0)]=-

1 x

6 Evaluate: J‘ xy(x+y) dx dy

} dx
| 5
2 4 4
=jx_+x__x__x_dx
v 2 3 2 3
7 1
B x_4 2)(2_)c_5
8 21 6
0
L2 1 3
8 21 6 56
2y
8 Evaluate dx d
-][-([ X+ 4

2y 1 2
J:!; R zdxdy:! dy

1 [ r XT
— | tan  —
Yy Yo

(tan 1—tan™ O)d
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9 Evaluate j. ' J: ) dy dx

0 0
]1- asz dy dx = j a’ —x* dx
0 0 0

a

2
X a . x
=|=Va?—x*+—sin ' =
2 2 al,

2 2
= a—sin"1 1- a—sin_I 0
2 2

11 Evaluate J.J.xy dxdy where A4 is the
A

region bounded by the line x =2a and the
curve x° = 4qy and x-axis.

2a 4

”xy dxdy = I J. xy dy dx
0 0

https://doi.org/10.5281/zenodo.15288481

2 3
10 Evaluate I j xy” dxdy
1 1
2 3
J j xy* dxdy =
1 1
2
=j a—
1
' =4day
(2a,a)
y=0
x=0 X=2a

In the figure x varies from x = 0 to x = 2a. To find the
limit for y, we take a strip parallel to the y - axis, it’s
lower end lies on y = 0 and upper end lies on x2 = 4ay

2

ie. y=—
Y 4q
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12 Evaluate J.J. xy dxdy where A4 is the region
A

bounded by the first quadrant of the circle

X +y =a.
”xy dxdy = j. ajx xy dy dx
A 0 0

Double integrals in polar coordinates

% sin 6
13  Evaluate: j j rdr dO
0 0
% sing 1 % sin@
j j rdrcm:—j (7] do
2 0
0 0 0
13 .,
= —I sin“ @ do
2
0
11z {by reduction formula}
222 y
_r
8

3
sin” 0d6 = jcos'" 0do =
) 2

O 0 [N

according as m is odd or even.

_(m=1)(m —2)...(1) . (Z

J

(0,0)

x=0

In the figure x varies from x = 0 to x =a. To find the
limit for y, we take a strip parallel to the y - axis,
it's lower end lies on y = 0 and upper end lies on

X +y =a’ ie y'=a’—x and y=a’—x

H
14 Evaluate: J.

1
W[
| |
(=] [\
1)
=}
@
S
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H
15 Evaluate: J.
0

1+cos@

rdrdf

S 0 [y
O o | N

N | =

N | —
S =0 |y

O 0 | N

N | =

o —u |y

[ aoar
0
2
% 2cosf
Let/=[ [ drdo
0
p
= J. 2cos@ do
:
3
:2x2_|. cos@ df {Even integral property}
0
=4 [sind]>
=4

I+cosé

j rdr dO

1

P 1+cos @
[V—} do
2
1
(1+cos@)* -1 dé

1+cos’@+2cos@—1do

M+2cos@ do

4

sin 260 + 2sin 0}2

0

1
2 2x2

7 l-cos@

16 Evaluate: rdrdf

O
(=}

7 l-cos@
Let 1 :j

0 0

1—cosé
{r—} do
2

(1-cos@)* db

rdrdf

l\)l»—* °"_~>'
O ey N

l\)l»—‘

I 1+cos’@—2cosb do
0

[6- 2s1n9] + J.coszﬁd@
0

l\)l»—‘
N |~

+1J- 1+cos260 40
0

https://doi.org/10.5281/zenodo.15288481
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1
2x2

I 1—cos28 do@
0

20 Evaluate _[ I r* drd@ over the area

bounded between the circles
r=2cos@ and r=4coséd.

»=2cosd

r=4cosé
2 4

z
4cosd

ﬂ r3drdt9:j j ¥ dr dO

7T 2cosd
2

Il
N
—o N

SR

[F] ao

2cos@

https://doi.org/10.5281/zenodo.15288481

21 Evaluate ” r’ drd@ over the area

bounded between the circles
r=2sin@ and r=4siné.

¥
r=4siné&
o
“.E
o X
[[ r arae =T 4T€ P dr do
0 2coséd
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0 |
1
\O]
9]
(@)
(@]
Q
w2
N
N
|
p—
(@)
(@]
Q
2]
N
N
[
QU
D

= j cos'd do

cos'@® do

[\
AN
)

S =[N

|

N
-b‘-b EAN

[e)

X

N
e
N | —
(SN

22 Evaluate ” r*sin@ drd® over the

area bounded between the semicircle
r =2acos@ above the initial line.

¥

r=2acos&

2acos6

j j rsin@ drd@ = ¥’ sin@ drd@

S o |y

0

[ﬁ]z““"”sme do

W | =

Ol V[N O 0 [y

8a’ cos® @sin@ db

W | —

[F] ao

2cosé

[256cos4 6 —-16cos* «9} dé

cos'0 do

[\
N
=)

O 0 [ N

(]
N
[e)
(O8]
[

Il

X

N
P‘.
ro
NN

r
23 Evaluate ——— drd@ over one loop of the
[ »

lemniscate 7> = ¢’ cos26 above the initial line.

r“=a coslf

https://doi.org/10.5281/zenodo.15288481

g=0
r L ol r
——— drdf = ———= drdf
I o=l | m
4
% afeos26
2_[ [\/a2+r2} . do
g 0
4
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3 % % B
=8% I cos’ @sin 6 do :I \/a2+a2cos29—\/a_2} do
0 Ea
4
8a’ 2 z
= 4
3 42 :J a\/1+c0520—a] do
2a3 T
-5 B

I
Q

[\/2c0s2 6 —1} do

O |y _;;‘.\q'—rb\ﬁl

=2a \/Ecose—l do

—2a [JE sin@—@]g

Exercise

Evaluate the following integrals:

(i) !j o _ dy dx (ii) ! j Ja& —x =y dy dx

1 1-x l1-x-y log2 x x+logy

(iii) j j j xyz dz dy dx (iv) j j j e dz dy dx

0o 0 0 0

. Evaluate the following integrals:

% 4sin 6 2r 2 3z 20
rdrd6  (ii) 4r—r’dr dO (iii) rdrdo
0 x 00 0 8

Evaluate ” xydxdy over the region in the positive quadrant bounded by the line 2x+3y =6.

Evaluate ”x+ v dxdy over the region in the positive quadrant of the elllpse —+ % =1
a’

Evaluate ” x*>+y* dxdy over the region bounded by the parabola y* =4x and its latus rectum.

Evaluate ” xy(x + ) dxdy over the area between the parabola y* =4x and y = x.
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7 Evaluate ” x* dxdy over the region bounded by the hyperbola xy =4, y =0, x =1, and x=2.

Area Enclosed by Plane Curves

bd
Area bounded by the lines x=a, x=b, y=c, y=d (a<b & c<d) is ” dydx . The limits of inner

Sketch the region of integration for the double integral

2a 2ax

S(x,y) dydx

0 2

2ax—x

The region of integration is bounded by the lines
x =0, x=2a and the parabola and circle

y=+2ax ie y =2ax, y=N2ax—x’ ie. Yy +x —2ax=0

0, ry
integration should be in variable, if necessary. In polar form the area is given by Ij r drd@
O 1

respectively. *=0 x=2a
1 Find the area of the circle x° + ) =4’
Area = 4 (area in first quadrant) (0,2)
a N’ X ryi=d
=4 I J- dy dx
0 0
a . y=0
=4 I a’ —x* dx (0,0) (2,0)
0
4| 2 -+ Lsin '
2 a 0 x=0
=4 —zsin’1 1 —a—zsin‘1 0 In the figure x varies fromx=0tox =a. To
i find the limit for y, we take a strip parallel
] to the y - axis, it's lower end liesony =0
_4 a_zz} and upper end lieson x*+)° =4’ ie.
122 y'=a'-x> and y=+a’'—x".
=7a
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Yy

5=

2 Find the area of the elllpse —+
a’

Area = 4 (area in first quadrant)

Q

= ijdy
= —Imdy

@‘Q

|
B
I
1
N =
>
(3]
|
<
(3]
+
N | S
S =
| |
o

42 2
:4_a b—sin’ll—b—sin’lo
2 2

3 Find the area of the region bounded by the

line x = % and the parabola )’ = 4x.

Area = 2 (area in the first quadrant)

(0,0) (a0)

k=0

In the figure y varies fromy =0toy =b. To find the
limit for x, we take a strip parallel to the x - axis,
it's left end lies on x = 0 and right end lies on

2 2
X X
—+—Z2 =1 ie. —
a

sin0=0. ..

(0,0)

sin” 0 =0, sinz =1. ..
2

. T
sin'1==

=4y

/

(1/41)

(1/4.0)

x=0

x:1/4\

In the figure x varies from x =0 to x=1/4. To find
the limit for y, we take a strip parallel to the y -

axis, it’s lower end and upper end lies on )* =4x

ie. y=+/4x=+2Jx

In the first quadrant, y=0 fo y = 2x

Note:
3

2 (IT 8 (1
dx—x| —| ==x| —
3 \4 3 \4

1
j (ljz 2 1
x| — —X—
4 3 2
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4 Find the area between the parabolas
X = 4y & y2 =4x

4 20y
Areazj I dx dy
0 32
r
y2
=| 2Jy—-—4d
_([ Y 4 Y
4
3
Y
312
2 0
343
P
3 12
_16
3

5 Find the area between the parabolas
5x* =9y & 3y° =25x

3
o
J‘ dx dy

3
25

Area =

S C—y 0

I
)]

x" =4y ,

©.0)

In the figure y varies fromy=0toy =4. To
find the limit for x, we take a strip parallel to

the x - axis, it’s left end lies on
2

Y =4x ie x= yf and right end lies on

x2:4y & x=2\/;.

Note:

343
224 X A,y 04 32 1616
3 12 3 12 3 3 3

In the figure y varies fromy=0toy=>5. To
find the limit for x, we take a strip parallel to
the x - axis, it’s left end lies on

2
3y =25x ie x= 32% and right end lies on

5% =9y & x:%\/;.

Note:
343
224 3, g 04 32 1616
3 12 3 12 3 3 3
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6 Find the area of the region R enclosed by the
parabola y = x° and theline y=x+2.

x+2

j dy dx

x?

2
Area = I
-1

= jx+2—x2 dx

7 Find the smaller area between the line
x+y=a and the circle x’ + )’ =a’.

Area = I
0 a-y

- a’—y’ —(a—y)dy
[

dxdy

; 0 —2 0
a’ a’ a’
=|—sin'1-—sin'0 |-| 0+ —
2 2 2
_ar_a
22 2

(0.2)

-1,1

x=0

(0.3)

(a0)

In the figure y varies fromy = 0 to y = a. To find the
limit for x, we take a strip parallel to the x - axis,
it'sleftend lieson x+y=a; x=a—y andright

2 2

endlieson x’+y*=a’; x=+a’—)".
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8 Find the area of the circle »=a.

In a circle r varies from 0to a and @ varies from
0t 27

N>

Area = ” rdrdf

:T j rdrdf
0

0

Soe

9 Find the area of the region outside the
inner circle » =2cos@ and inside the outer
circle » =4cos@ by double integration.

r=2cosé

r=2cos@ is a circle with diameter 2. »=4cosé&
is a circle with diameter 4. Initial line is the
diameter.

Area = 2(area in the first quadrant)

=2jj ¥ drdo

%40059
=2j j rdrdé
0

2cosé
;/'2 4cos6
— do
2 2cos6

16cos’@—4cos’ 0 dé

Il
[\
O C— 0 |y

Il
NSNS}
S 0 | Y

=12 | cos’0 db

O 0 | N

—1ax A E

=37
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10 Find the area of the cardioid » = a(1+cos8)

From the figure = a(l+cos @)

Area = 2 (area of upper part)

7 a(l+cos®) 8=0
=2 j j r dr do
0

0

T ]/-2 a(l+cos@)
2[ | = do
o |2

0

s

a’ J. (1+cos@)* do

2cos’ @ =1+cos26. .'.1+cos€=2c052§

(=]

T 0 2
:az.[ (2005’25) 40 Put §=¢. Hence 0=2¢ and d0=2d¢

when 0 =0, ¢=0. when 0=r, ¢:§

Exercise

1 Find the area bounded by the parabola y =x” and the straight line 2x—y+3=0.
2 Find the area between the parabolas y* =4ax and 4by = x".

3. Find the common area between the parabola y* = x and the circle x* + y* =2.
1
4 Find the area of the region inside the cardioid » =1+cos# and outside the circle r = —.

5. Find the area of the region bounded by the lemniscate > =4cos26.
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Change of Order of Integration

It sometimes happens that one iterated integral is either difficult or impossible to evaluate, whereas the
other iterated integral can be evaluated easily. The change from one iterated integral to the other is
called change of order of integration, since it involves changing from dxdy to dydx, or vice versa.

We know that the limits for inner integration are functions of variable, the change in the order of

d g(»)

integration will result in changes in the limits of integration. i.e. the double integral I I f(x,y)dxdy

b hy(x)

c gy

will take the form I I f(x,y)dydx when the order of integration is changed.

a Iy(x)

To effect the change of order of integration, the region of integration is identified first and then new limits
are fixed. (Constants limit for outer integral and variable limit for inner integration).

1. Change the order of integration and evaluate

4 4 ¥
II e dy dx

0y

Rewriting the given integral in proper order, we have

4 4
II xzdxdy
0y

X +y
.. the region of integration is bounded by
xX=y y=0
x=4 y=4

By changing the order, we have

F 3
y =X
(0,4)
y=4
(4.4)
> y=0
(4.0) Y

In the figure x varies from x = 0 to x = 4. To find
the limit for y, we take a strip parallel to the y -
axis, it's lower end lies on y = 0 and upper end

lieson y=x.
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2. Change the order of integration and evaluate

jj 2x > dydx
0 X +y

Given integral is in proper form.
By changing the order, we have

1
-

X

dxdy

O

X'+

‘(i)‘ [log(x2 +y° )l: dy

N | =

Il
N | —
[ S—

[lotc:v,(2yz)—log(y2 )] dy

Il
N | =
© — —

[log2] dy

= % [log 2]

3. Change the order of integration and evaluate the

a a

integral j I (x2 + yz) dy dx

0 x
Given integral is in proper form.

By changing the order, we have

1= j. Jy. (x2+y2)dxdy
0 0

| N}

—
\]

.. the region of integration is bounded by

x=0 y=X
x=1 y=1
y=x
(0,1)
y=1
(L1)
x=0
x=1

In the figure y varies fromy=0to y=1. To find
the limit for x, we take a strip parallel to the x -
axis, it’s left end lies on x = 0 and right end lies
on x=y.

Note: loga—logh = log%

j k dy=k[y] =k(b—a)=k (UL-LL)

.. the region of integration is bounded by
x=0 y=Xx

xX=a y=a

v

x=0
X=a
In the figure y varies fromy =0 toy = a.
To find the limit for x, we take a strip
parallel to the x - axis, it’s left end lies on x
= 0 and right end lieson x=y.
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2

4. Evaluate the integral _[ _[ xei7dydx by
0 0

changing the order of integration

Given integral is in proper form.
By changing the order, we have

1
N | =
S =y 8

|

<
1
S

|

C\I

<
L1
S

o0

9 -y

5. Evaluate the integral _[ I e—dydx by
0 x y
changing the order of integration

Given integral is in proper form.

By changing the order, we have

_ e
I = !! ych@f
- [ o
0
= T e’dy
0

.. the region of integration is bounded by
x=0 y=0

X =00 y=x

y=x

y=0

x=0
In the figure y varies fromy =0 toy =oc. To find
the limit for x, we take a strip parallel to the x -
axis, it's left end lies on x = y and right end lies on

X =00,

Let x2=u. Then 2xdx=du

when x=y, u=y2 when x=«, u=«

Ie_xxz_ldx=F(2)=l! & e7=0
0

.. the region of integration is bounded by

x=0 y=X
X=00 y=0
r
y=X
x=0

In the figure y varies fromy =0 toy = o. To find
the limit for x, we take a strip parallel to the x -
axis, it's left end lies on x =0 and right end lies on

xX=y.
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6. Change the order of integration .. the region of integration is bounded by

4a 2Jax xz
J xy dydx and evaluate it. x=0 y= T ie. x*=4ay
a
0 xz
4a x=4a yz%/g ie. y’ =4ax
Given integral is in proper form. &
By changing the order, we have x2 =4ay
\ 1y’ =4ax
4a 2\/5 A\ P 2
I= I I xy dxdy \ . S
0 ) \\ £
4a \\.
\\‘-_‘-
4a x2 24fay x
= — d @ [\ —4a
_([y |: 2 :|2 y \\\\‘ x=4
4a \-\‘7_\_
l 4a y4 <—0
=— 4ay — d
2 ! Y { Y 16a2} g
In the figure y varies fromy =0 toy =4a. To find
| 4 3 the limit for x, we take a strip parallel to the x -
== I {4(1)}2 -— :|dy %
29 16a axis, it’s left end lies on ) =4ax; x = ” and right
a
1 3y . end lies on x* =4ay; x =2\ ay.
2 3 96d” |
1 [, 64a® 256x16a°
=— |4a - >
2 | 3 96a
1 [256a" 2564
2 3 6
_ 256" [ 11 }
2 3 6
1284*
6
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4 2x .. the region of integration is bounded by
7. Change the order of integration J. J. dy dx ¥2
0 i x=0 y=— ie. x’ =4y
@ 4
and evaluate it. x=4  y=2Jx e y*=4x
Given integral is in proper form. i
By changing the order, we have X’ =4y J// 2y
Vv =4x
4 2y “.4)
I = dxdy '
0 }72
4 &
4 2 (0,0) _
- J‘ 2 y . y_ dy x=4
0 4
4 1 2 x=0
= j 2y2 - L qy
0 4 In the figure y varies fromy =0 toy =4. To find
- - the limit for x, we take a strip parallel to the x -
4 5 vy 2
= gyz BEE) axis, it's left end lies on y* =4x; x = y? and right
L -0
- - endlieson x> =4y; x=2y.
B EV N R e
'3 12 | 3
A ¥ .. the region of integration is bounded by
8. Evaluate by changing its order J. J. — dy dx y=0 x=y
0 X +y
. y=1 x:\/; ie. x’=y
Rewriting the given integral in proper order, we have
1 \j)—/ A
X y=x
J- J- 2y 2dXdy (1,1) J
0 y X y y=1
By changing the order, we have
1 x 2
: X K=y
I = dy dx
J J el
2 » y= 0
| . (0,0)
= _[ (tan"1 Z] dx
0 X )2
In the figure x varies fromx=0tox=1. To
1 . . . .
_ _[ T tan~ x dx since tan~'1=2 find the 11m1.t fo-r’y, we take a .StI‘lp parallezl
o 4 4 to the y - axis, it's lower end lies on y=x
1 and upper end lieson y=x.
= | Zx- xtanflx—llog(1+x2) = llog2
4 2 o 2

330 | Page

https://doi.org/10.5281/zenodo.15288481



9. Change the order of integration in
%xﬁé—xz

4
j I x dy dx and hence evaluate.
0 0

Given integral is in proper form.

By changing the order, we have

10. Evaluate by changing the order of

a Na*-y?
integration I j y dydx
0 a-y

Rewriting the given integral in proper order, we

o N
have J I y dxdy
0 a-y

By changing the order, we have

a o=
I:I I v dydx

0 a-x

.. the region of integration is bounded by

x=0, x=4, y=0, )/:%\/16—x2

2 9 2 . 2 2
~ 2 (16-x ie. 16y° =144—9x
y 16( ) y

ie. 9x°+16)° =144 ie. 42 =]

In the figure y varies fromy =0 toy=3. To find
the limit for x, we take a strip parallel to the x -

axis, it's left end lies on x =0 and right end lies on

.. the region of integration is bounded by
y=0 x=a-y ie. x+y=a

y=a x:«/az—yz ie. xz+yz:a2

(a,0)
y=a

f \\‘3{\\

\ x2+y2=al

> y:O

(a,0)

Xt+ty=a
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0 In the figure x varies from x = 0 to x = a. To find the
- l j‘ (az g ) —(a- x)z dx limit for y, we take a strip parallel to the y - axis,
2% it's lower end lies on x+y=a; y =a—x and upper
3 3
L [ (a—x) endlieson x’+y>=a’; Y =a’-x*; y=a’—-x*.
2 3 -3
1| , & &
= — a ————
2 3 3
_ @
6
3 4y
11. Evaluate j '[ x+y dxdy by change of order of .. the region of integration is bounded by
o 1 y=0 x=1
integration.

y=3 x=44-y iex =4-y

Solution: Given integral is in proper form.
By changing the order, we have 4

2
-
1

42

f x+ydy dx
0

P P 4-x2
I {xy+—} dx
1

0

:j‘x(4—x) %(4 x) dx

2
1
= I —x*—x’—4x* +4x+8 dx
2 In the figure x varies from x =1 to x = 2. To
Yot a4y 2 find the limit for y, we take a strip parallel to
42X +8x o .
10 4 1 the y - axis, it's lower end lies on y =0 and
upper end lieson x*=4-y; y=4-x".
= 2—4—2 8+16 |- L—l—i+2+8 S
10 10
_ 24l
60
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12. Change the order of integration and

1 2-y
hence evaluate I J xy dxdy
0 2

y

Given integral is in proper form.

By changing the order, we have

Jx

I = j J‘ xydydx+j- zjx xy dydx
1 0

0 0

1 NG 2 2\
= J-x(y?] dx + J.x(y?j dx

0 0 1

_llzd 1¢ ) 2
—5-([)( X+E!X( —X) X

1
= lJ. x”dx +
20

4x+ x> —4x* dx

N | =
—_——

.. the region of integration is bounded by
y=0 x=)’
y=1 x=2-y idex+y=2

(0.2)

(0,0)

In the first region x varies from 0 to 1. To find the

limit for y, we take a strip parallel to the y - axis,

it's lower end lies on y =0 and upper end lies on

vi=x y=+x.

In the second region x varies from 170 2. To find

the limit for y, we take a strip parallel to the y -

axis, it’s lower end lies on y =0 and upper end lies

on x+y=2; y=2-x.
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Change the order of integration and
2-y

1
hence evaluate j J. xy dxdy
0 vy

Given integral is in proper form.

By changing the order, we have

2—x

I = j‘]ﬁxydydx+j‘ I xy dy dx
0 0 1 0

W | —

.. the region of integration is bounded by
y=0 x=y
y=1 x=2-y iex+y=2

(1.1)

(0,0) (1,0) (2,0)

x=1

X+y=2

In the first region x varies from 0 f0o 1. To find the
limit for y, we take a strip parallel to the y - axis,

it's lower end lies on y =0 and upper end lies on

y=x.

In the second region x varies from 170 2. To find

the limit for y, we take a strip parallel to the y -

axis, it's lower end lies on y =0 and upper end lies

on x+y=2; y=2-x.
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14. Change the order of integration and hence

a 2a-x
evaluate J.
0 xz

a

xy dydx

Given integral is in proper form.

By changing the order, we have

a Jay 2a 2a-y
I = I J. xy dxdy + I J. xy dxdy
0 0 1 0

0

at 5 1
= — dy + —
2!yy >

o 2\
—jy7 dy +

2a 2 \2a~y
X
_[ ){?j dy
a 0
2a

[ v(2a-y) dy

a

a 2a
= %j Y dy + %J- 4a’y+y’ —4ay’ dy
0 a

3 2

0

3\ oA 2a

4 3

4 4 4
— 8a4+4a4—32a - 2a4+a——4i
2 3 4 3

.. the region of integration is bounded by

2

ie. Xx =ay

ie. x+y=2a

x2 = ay
(a,2)
y=a
(0,0)
X=a
Xx+ty=2a
x=0

In the first region y varies from 0 7o a. To find the
limit for x, we take a strip parallel to the x - axis,

it'’s left end lies on x=0 and right end lies on

X =ay; x=,ay.
In the second region y varies from a fo 2a. To
find the limit for x, we take a strip parallel to the x
- axis, it's left end lies on x=0 and right end lies

on x+y=2a;, x=2a-y.
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15. Change the order of integration and hence

Given integral is in proper form.
By changing the order, we have

X

Loy
_ X xd _r
[xz_'_yz xy+.([.([ x2+y2

dxdy

Il
_"—'%‘l
51
|
<
S
_I_

) ——
—
ISy
R
N —
<
S

.. the region of integration is bounded by
x=0 y=X

x=1 y=+2-x" e x4y =2

\J

In the bottom region y varies from 070 1. To find
the limit for x, we take a strip parallel to the x -
axis, it's left end lies on x=0 and right end lies

on x=y.

In the top region y varies from 1 to J2. To find
the limit for x, we take a strip parallel to the x -

axis, it's left end lies on x=0 and right end lies

2

on x’+)y° =2 x=42-)".
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3, N4y .. the region of integration is bounded by
16. Evaluate I _[ x+y dxdy by change the y=0 x=0
0 0
. 2
order of integration. y=3 x=\4-y e X =4-y
Given integral is in proper form. (0.4) 1
By changing the order, we have \ y=3
13 2 47 "
I = I j x+ydydx+'|- I x+y dydx
0 0 1 0 4 >
y=0
(1,0) | (2,0)
‘ 2T 241
= I 2| dx + 2= {Refer example 10} x=1
0 2, 60 ,
x*=4-y
x=0
= j 3 +2 dx + 241
B ) o 2 o 60 In the first region x varies from 0 to 1. To find the
limit for y, we take a strip parallel to the y - axis,
2 1
— 3i+9_x + 241 it’s lower end lies on y =0 and upper end lies on
2 2 60
y=3.
3 9 241
= —+=—+—
2 2 60 . . ,
In the second region x varies from 170 2. To find
the limit for y, we take a strip parallel to the y -
axis, it’s lower end lies on y =0 and upper end lies
on x’=4-y;, y=4-x
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3
17. Evaluate J'

1 y=0
order of integration.

x* dydx by change the

e )

Solution: Given integral is in proper form.

By changing the order, we have

x* dx dy

=

&

=

+

—
——— [

2 . 37P 6 37
X X |Y
= —| dy+ {—} dy
(5] o115
2 r 6
| 9_1} a1 {2_136_1}6,
b3 39 | 5 3
26 1 216 7
2 y
e
3 30 2y 3,

.. the region of integration is bounded by

x=1 y=0
x=3 y:é ie. xy=6

x

Xy=0
(1,6)

Eos (32)

y=2
y=0 >

x=3.

Exercise

1. Change the order of integration and then evaluate the following integrals:

- 2
O [ [ dvax () [

0 1

xy dydx

S [ A

1y
¥y
() [ [ == =

0 5?2

dydx (iv)

https://doi.org/10.5281/zenodo.15288481

|

In the bottom region y varies from 0o 2. To find

the limit for x, we take a strip parallel to the x -

axis, it’s left end lies on x =1 and right end lies on

In the top region y varies from 2 to 6. To find the

limit for x, we take a strip parallel to the x - axis,

it's left end lies on x=1 and right end lies on

Txx+y dy dx

1
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Change of variable in double integral

Quite often, the evaluation of a double integral is greatly simplified by a suitable change of variables.
Let the variables x, y in the double integral _U f(x,y)dxdy be changed to u, v by means of the relations
A

x=@(u,v), y =y(u,v) then the double integral is transformed to [[ £(4(w,v), y(u,v))|J |du dv where
A

o ax

= M = Ou  Ov and A is the region in the uv— plane which corresponds to the area 4 in the xy — plane.
o(u,v) | oy
ou Ov

Change to polar co-ordinates

Let x=rcos@, y=rsin@ then x’ +y*> =r> and dxdy = J |drd@ = rdrd@ .

X, X,

7

yr y&

6 —rsind
Because J = M = = €08 e = r(cos2 6 +sin” 6’) =
o(r,0)

sin@ rcosé

The limits for » and € can be found by the region of integration. It should be noted that the change from

Cartesian to polar co-ordinate is useful when the region of integration is a circle or part of a circle.

dydx changing into polar

1. Evaluate ,[ J .. the region of integration is bounded by
0y

x’
xX= =0
coordinates 4 4
xX=a y=a
Rewriting the given integral in proper order, we have R
I I > dxdy
e X+ y-x
Let
x=rcos@, y=rsiné then X’ +y* =r* and dxdy = rdrd@ i y=a
~ |(a.a)
Z asecd
J- rcos@ vdr dO
0 //’,,’,
% asecd (2,0) > y= 0
= j cos® dr df
0

SR N R e S N

(COS ‘9)(‘156‘39) do Here r varies from 0 to the line x = a. i.e.

rcos@=a ie. r=asect and 0O varies from 0
to m/4.

)
Y
D)

I
I

X

N

N
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2 A4-y?
2 Evaluate '[ J x> +y* dxdy by changing into

0 0
polar coordinates.

Let
x=rcos, y=rsiné then x’ +y* =r* and dxdy = rdrd@

2

2 N4-y
I J. x*+y* dxdy =
0 0

S =0 [N

2
I r rdrdf
0

oy O 0 | N

Il
O 0 | N
A
QL
D
Il
N
I
Il
N
S|

3  Using polar coordinates, evaluate H e dydx ,
R
where R is the semi circular region bounded by

the x— axis and the curve y=+1-x".

Let
x=rcos@, y=rsiné then x’ +y* =r* and dxdy = rdrd@

(=}

Hexzwzdydx:]{ I ¢ rdrdo
0
1
2

https://doi.org/10.5281/zenodo.15288481

to m.

Given limitsare y=0 & y=2
x=0 &

ie. x’=4—-y% ie. x*+y’=4

(0.2

y=0
(2.0

Here r varies from 0 to 2 and 0 varies from 0
to /2.

The area is bounded by x-axis and the curve

y=+l-x> ie. x*+)’=1.

1

H+yl=
7\
J )

Here r varies from 0 to 1 and 0 varies from 0
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o0 00

4 Evaluate I I k) dxdy by changing
0 0
into polar coordinates.

Let

x=rcos@, y=rsin@ then x* +y* =r’
and dxdy =rdrd 6

0 0 2+;z E © "2
_[ J. e’(x ) dxdy = I I e’( ) rdrd@
0 0 0 0
1% T
= EJ [ e dudo
0 0
H
_ 1 J' o -1
29 22
2 2x —x2 x
5 Evaluate ————dydx by
'([ '([ Jxi+y?
changing into polar coordinates.
Given limitsare x=0 & x=2
y=~2x—x"
y=0 & y'=2x-x
x4+ =2x=0

x=rcos@, y=rsiné then X’ +y*> =r", dxdy = rdrd 0

2 /2 2cosf
X rcosd
| | =—=ou-] |
0 0 X +y 0 0 r
/2 2cos@

=.|. J- rcos@ drdd

0 0

/2 rz 2cos@
= j {—} cos@ do
2

0
/2

:2I cos’@ do

0

rdrd@

0

_op3 4
3 3

Given limits are y =0

x=0

& y=o

& x=o0

y=0

Here r varies from 0 to oo & 6 varies from 0 to wt/2.

Let r*=u, 2rdr=du

whenr=0, u=0 and when r =0, u =0

0

Also j e "du=1

0

This is a circle with centre (1,0) and radius 1.

x? +_v2 —2x=0

c(L0) (2,0)

r*cos’@+risin’@—2rcos@=0
r*—2rcos@=0
r(r—2cosf)=0

r=0, r=2cosd

Also 0 varies from 0 to m/2.
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20 N2ax—x?
6 Evaluate I '[ (x2+ yz)dydx

0 0
changing into polar coordinates.

Let
x=rcosl, y=rsiné then x’+y* =r’

and dxdy =rdrd 6

2a \j20~’6—x2 /2 2acosf

by

I j x2+y2dydxzj I rrdrd@
0 0

0 0

z2 4 2acos@
= J {r_} 4o
0 4

0

4 /2
_ 164 I cos'0 do
0
g4t dla3
4 -2 2
3
= rxa
4

Given limitsare x=0 & x=2a
y=0 & y=+2ax—x

. 2 2
ie. y =2ax—x

ie. x*+y*—2ax=0

This is a circle with centre (a,0) and radius a.

'+ —2ax=0

y=0
(0,0) (2a,0)
x=0 x=2a

r*cos® @ +r*sin® @ —2arcosf =0

r* —2arcos@ =0

r(r—2acos@)=0

r=0, r=2acos@

Also 6 varies from 0 to m/2.
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Let

3
7  Evaluate J.J- xy(x2 + y2)2 dxdy over the positive x=rcosf, y=rsin@ then
quadrant of the circle x* +)° =1. 2 +y*=r’ and
31 3 dxdy =rdrd 0
[[oo(x+5?) ded = j reos@.rsind.(r?)? r dr do
0 y
3
=| [ r*cos.sin0 dr do B(0,1)
0 0 r+yi=1
13 ol .
= —I [r ] cos@.sinf dbf
7 0
0 0 A(1,0)
3
=1.lj sin20 do _ _ S _
72 The region of integration is given here in
z which r varies from 0 to 1 while #varies
1 { cos26’}2 x
T4l f 0to—.
14 2, rom 0 0 ~
= _l'L[_l_l] = 1
214 14

Exercise

1 Evaluate the following integrals by changing to polar coordinates:

1-x°
(1) ” ) dxdy over the positive quadrant of the unit circle
1+ x*+y°

(ii) J.J.\/az —x —y2 dxdy over the semicircle x’ +y2 =ax inthe positive quadrant

(iii) ”(az —x’ —y2 )dxdy over the semicircle x* + y2 =ax inthe positive quadrant

X yj
a’ v
(iv) ﬂ dxdy over the positive quadrant of the elllpse —+ b_2 =1
x' )’ a’
1 + —t

b2
(Hint: By suitable substitution convert this into circular region and then apply polar coordinates)

a

2 Evaluate j J. \/7 dxdy by changing to polar coordinates.

y

2_.2

a a —x 1
3 Transform the integral j — dy dx in polar coordinates and then evaluate it.
0 «iax—xz a —x - y
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Evaluation of Triple Integrals

Z YV X

Consider the triple integral I I I f(x,y,z)dx dy dz .

I NN

a. If x,x,, ., 2z, z, are constants, then the order of integration is immaterial, provided the limits of

integration are changed accordingly.

b. If z,z, are functions of x & y; y,, », are functions of x; x,, x, are constants, then the integration is

XV

to be performed firstly w.r.t z, then w.r.t y and finally w.r.t. x. Thus I I _[ f(x,y,z) dz dy dx .

RIS ]

Xy Vy I

c. If f(x,y,z)=1, then the triple integral I J. I dz dy dx gives the volume enclosed by the regions

1 Evaluate

—
(¢"]
—
~
Il
O ey
O ) >
S t—

Il
O ey

Il
O e

.3
X

3

O e

|

;P
x’c +y—c+c— dx
14 3 3 y

xzcb+b—c+
3

3

3

3

x*+y +z" dz dy dx

c

3

=| Zch+ Zex+ by
3 3

—b | dx
3

XN o4

x> +y* 4z dz dy dx Let I:T j)- j. e dz dy dx
0 0 0
23 T iy dv = Ie"dx :[eydy jjezdz
0

.
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2 Evaluatej _Ii j e dz dy dx
0 0 0
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e logy € e’
3 Evaluate: J. '[ J. logz dz dx dy Consider /= J. logz.1ldz
1 0 1 1
Let
e logy ¢ u=logz and dv=1.dz
Let 7=[ [ [ logzdzdxdy
1

1

f=}

du:ldz and v=z

e logy zZ
:! ! xX— 1 e “+1dx dy {Refer next column} I=[z.logz]lgx _] . ldz
. Z
juv=(u)(v1)—(u )(v2)+... zexx—(ex—l)
:I [(x—l)e"—(l)ex+x]z)gy dy :(x—l)e" +1
1
=j. [xe" —2e" +x]loogy dy Consider / :j (y+1)logy dy
1

1

ylogy—2y+logy+2dy u=logy and dv=(y+1)dy

_L_,m

2

duzldy and v:y?+y

= [ (r+Dlogy+(2-2y) dy y

1

e B y2 ¢ e y2 1

j(y+1)1ogydy+j (2-2y) dy 1= 7+yj<logy) -] (Tyj;dy

1 L 1 1
:e—2+§+(2y—y2)e {Refer next column} —_ e_2+ (loge) _j' Yi1lg

4 4 1 —_ 2 e Oge 1 2 y

e 5 _
=—+=+(2e—-€"—1 2 2 ‘

L 2 4 1
—2e-3e 41
4

| favitaey
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4 Evaluatej jl
0 0

Given [ :j.

0

Es
| 2

2
a
2

6 Evaluatej I
0

1 2 3
JI] o
0 0 0

Cc

_[ xyz dz dy dx

0
b c
xde ydyJ- zdz
0 0
YA
o 2 0 2 0
1Mo ][ ¢
{?H?} 8
2 3

J- xy°z dz dy dx

0 0

1

dz dya'x:jxdx‘z[y2 dy j.zdz
0 0

0

6

5] [] 5]
5ol

b

5 Evaluate

iy

S — —

1

xy°z dz dy dx = Ix dx

f=}

x
2

j '3[ xy°z dz dy dx
1 2

EIE

https://doi.org/10.5281/zenodo.15288481

2 3
v dy Iz dz
1 2

_(1)(8 1y 4y _3s
203 372 2 12
2a x x
7 Evaluate _[ I xyz dz dy dx
0 0 y
2a¢ x x 2a x ZZ x
IJ‘J‘ xyzdzdydx:J.I xy{—} dy dx
0 0 y 0 0 y
1 2a x
LT wl e
0 0
1 2a x
e
0 0
1 2a 2 4\*
:—J. (xj’y——x—J dx
29 2 4 0
1% (¥ &
ZEJ(E“ZJ“
_L(x Y
2112 2 o
_l 64c16_a_6
2 12 24
_Le(oa_1
2 12 24
Lo ()
2 24
127,
48
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8 Evaluate: [[[ Zdxdyd:

el Put y=+1-x"sin@ hence dy=+1-x"cos6 db
The region R is bounded by the sphere
x> +y” +2z° <1 can be expressed as When y=0, and when y=+1-x"

—1<x<1, —+/ —xZSyS\/l—xz,
—\/1—x2+y2Sz< 1- x+y

0=+1-x"sind \/1—x2=\/1—xzsin0

0=sind I=sind
i
| J.J‘zzdxdydz:j. | | | L 4 dy dx -
R - ﬂ [ 5. 0=0 0:5
1 \/7 1-x2—?
2‘[ z* dz dy dx

()
(=]

-1 1—x

[(l—xz)cos2 «9]3 J1—-x* cos@ dO dx

[ S—
O o [N

{Because z* is even function}

N . | z
%J- lfxz ﬁdz dy dx :gjl :[ (1—X2)2C0s46’d0dx
Vi 3x1
Ej J 1 x*—y )idydx =—J. 1 x24:272[
35 =
4 4 = 3 43”I 1+ x* =2x% dx
ZEJ‘ I 1 x* - )2 dy dx 316
-1 0
{since the integrand y2 is even} :g.[ 1+x*—2x7 dx

{since the integrand is even}
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9 Evaluate

a Va*-x \az -x’ yz 1

dz dy dx
\/az_xz_yz_zz

0 0 0

a Na*=x? a-x’-y 1
I= .[ .[ I \/az_xz_ 2 dz dy dx
0 0 0 y —z
3 z
= ’([ { —,—az_xz_yz ]O dy dx

[sm 1 —sin 10] dy dx

Il
S ey

e
|
=
J
0
\/:
J — dy dx

0

Il
O e

= %j Na* = x* dx
0

a

2
=z E\/az—x2 +Lsin 't
2 12 2 a

0

10 Evaluate _m (x+y+z) dx dy dz over the

tetrahedron bounded by the coordinate planes

and the plane x+y+z=1.

From the given data, the limit of the region is
expressedas 0<x<1, 0<y<l—-x, 0<z<1l—-x—y.

lzm(x+y+z)dxdydz

1 1-x l-x—y

J- } (x+y+z)dz dy dx

I
—

0

o'—.g<

r P 1-x—y
(x+y)z+%} dy dx

0

Il
o —

—

I
) ——
o'—,d<

—_

o'—.}L

N | —

(1-x-y)A+x+y)dydx

o —
—
|
=

[ S——

I [1—(x+y)2} dy dx

N | —

Il
N | =
© —
1
—
=
+
<
~
w
—
4
QU

N | =

) S
~
[
=
N’
|

W | =
+

w|><w

[
IS
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(x+y>(1—x—y)+—(l"‘2‘y)2}zy dx
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1

11 Evaluate Ijjm

dx dy dz over

theregion x>0, y>0,z>0, x+y+z<1.

(Note: over the region bounded by the
coordinate planes and the plane x+y+z=1.)

From the given data, the limit of the region is
expressed as
0<x<1],0<y<l-x, 0<z<l-x-—y.

1
I = J]Jm dx dy dz
1
-
0

1 1—x [ ey
:I J- (x+y+z+1) } dy dx
0 0

1

1—x—y
I (x+y+z+1)" dz dy dx
0

-2

0

1 1-x 1 1
ST e o e
5 o L 8 2x+y+])

[L1aewt xn |
—{ 2 + 2log(x+l)}

0

= -_.J; 4_.1_1()2;:2 — _1_
4 2 16

1 5
= —log2——=
2% 16

12 Find the volume of the sphere x° +y° +z> =4’
using triple integration.

Volume of the Sphere = 8 (Volume in the first octant)

=3 Uj dxdydz

¢ N2 -y
:8.([ .([ ‘([} dz dy dx
N
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13 Find the volume of the tetrahedron bounded by the coordinate z
planes and the plane x+ y+z=1. 0.0,1)

From the given data, the limit of the region is expressed as

0<x<1,0<y<l-x, 0<z<1-x—y. Therefore volume of

tetrahedronis V = J._U dx dy dz
R

I-x 1-

|

y

]. dz dy dx

Il
© — —

—_

o'—,l

l—x—y dy dx

Il
[SY S——

r y2 1—x
— Xy —— dx
y—xy 2}

Il
(S S—

Il
o t— —
—~~
[S—
|
=
~
|
e
—~~
[—
|
=
~
|
—~~
—
|
=
~
[\
| I |
&

Exercise

1 Evaluate the following triple integrals:

2

z Xtz

1) Jl. I I X+ y+zdydxdz (i) _T

-1 0 x-z

asiné

O 0 |y

J. J- Xy + vz + xz dxdydz (iii) I rdzdrd@
0 0 0

2
2 Evaluate m xyz dxdydz over the ellipsoid x_ + 2}—2 + j—z =1

3. Evaluate Hj Xy + yz+xz dxdydz where V' isboundedby x=0,x=1, y=0, y=2,z=0and z=3.
V

4. Evaluate .”.J. T dxdydz where V' isboundedby x=0, y=0,z=0and x+y+z=1.
x+y+z+1

5. Evaluate ”.[ xyz dxdydz where V is the region of space bounded by the coordinate planes
vV

x=0, y=0, z=0 and the sphere x> + y” +z° =1and contained in the positive octant.
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Change of variables in a triple integral (Change to cylindrical polar co-ordinates)

Let x=rcosd, y=rsinf and z=z
Then x* +y*> =r* and dxdydz = J | drdOdz = r drdOdz
or 00 oz
ox,y,z) | &

cosf -—rsind O )
cosd —rsind

Because J = = =(sin@ rcos@ O]=1x| =
o(r,0,z) |or 00 oz 0 0 sind rcosf
= o o
or 00 oz

The limits for » and € and z can be found from the region of integration and & e(O, 27r).

Cylindrical polar coordinates are useful when the region of integration is a right circular cylinder

Z

P(xy,z)

1 Evaluate ﬂ j z(x*+y*) dx dy dz

2+ y2 <1
2<z<3

Changing to cylindrical polar co-ordinates by the relations x=rcosé, y=rsinf and z =z the region

{(x,y,z):x2 +y2 <;2<z< 3} is transformed to the region {(r,0,2):0<r<1,0<0<27,2<z<3}. Here

dxdydz is to be replaced by r dr d6 dz and x2 er2 is replaced by 7°.
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3 27 1

IH x’ +y dxdydz:I I jz.rz.rdrdﬁdz
0

x4y?<l 2.0

2<z<3
4!
z{”—} do dz
4

0

z=3

1]

zd0 dz

0

27 =
=— | zdz

4 2

5 ¥

_2_7rH

412,
_2_”{2_% Sz

4 12 2 4

2 Find the volume of the cylinder with base radius ¢ and height /.

The equation of cylinder is {xz + y2 <a’;0<z< h}. Required volume = ”j dxdydz
vV
Changing to cylindrical polar co-ordinates by the relations x =rcos@, y=rsinf and z=z

Then x> +y* =r* and dxdydz =rdrd@dz . Here {OSrSa,O£9§27z,0£z£h}

j rdrdfdz
0

h

Required volume = I
0 z-axis
T

1 ot—
N |,
—

QL

SN

X

| D
=?i { do dz —ya/x.s’/
T

X-axis
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3 Evaluate J._Uz(x2 +y° +zz) dx dy dz through the volume of the cylinder 24y =1 intercepted

by the planes z=2 & z=3.

Changing to cylindrical polar co-ordinates by the relations x=rcosé, y=rsinf and z =z the region

2

{(x,y,z):x2 +y“<;2<z< 3} is transformed to the region {(r,0,2):0<r<1,0<0<27,2<z<3}. Here

dxdydz is to be replaced by » dr d6 dz and X2y y2 is replaced by 7°.

J:U z(x2 +y° +zz) dx dy dz =
x2+y231
2<z<3

DO Sy 0

T I z(r2+zz)rdr do dz 2:3.
0

f=1

y
2 47
_2r Z_+Z_}
L 8 8 2
(9 81 4 16} 70
2| i+ =g
'8 8 8 8 4

Change to spherical polar co-ordinates

The relation between the Cartesian and spherical polar co-ordinates of a point are given by the equations

x=rsin@cosg, y = rsin@sing, z = rcosd and J = 222 1260 0 and dvdydz = |J|drd6ds . Also

o(r,0,9)
x> +y°+z" =r". Thelimits for » and 6 and ¢ can be found from the region of integration where

0 &(0,7), the angle between OP and +ve z—axis and ¢ €(0,27).

This is useful when the region of integration is in a part of a sphere.
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. . . 2 . .
4 A point P has spherical coordinates (8,%,—%}. Find the rectangular coordinates.

The rectangular coordinates are given by

x:rsianos¢:8sin(2—ﬂ)cos[—£j:8sin(z+zjcos(£j:8 ﬁ ﬁ =6
3 6 2 6 6 2 2
y:rsin@cosqﬁ:8sin(2§jsin[—%):—8sin(%+%jsin(%):—8[§j(%j:—2\/§
2 T T . (7 1
z=rcos€=8cos(—):8cos(—+—j:—8sm£—]:—8(—j:—4
3 2 6 6 2

5 Find the volume of the sphere x’ + )’ +z* = ¢’ using spherical coordinates.

Required volume = ”I dxdydz whereV is the sphere x* + )’ +z° =a’.
V

Changing to spherical polar coordinates by the relations x =rsinfcos¢, y =rsinfsing, z =rcosf
where 0<r<a,0<0<7,0<¢<2x and dxdydz=r>sinOdrdOd¢

L ¥4

¢
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2r ™ a
*. Required Volume = [ [ [ rsin0 dr d0 dg
0

0 0

:T ]T. |:%3Tsinl9 d@ d¢
0 0 0
3 27 @
="?j [ sing a0 dy
0 0

3 27
:%I [-cosO], d¢
0

:%j [1+1] dg

6 Evaluate Hj (x2 +y° +zz) dx dy dz through the volume of the sphere 2y,

Changing to spherical polar coordinates by the relations x =rsinfcos@, y =rsinfsing, z =rcos8 where
0<r<a,0<0<7,0<¢<27 and dxdydz=r"sinOdrd0d¢. Also x’+y’ +z> =r>.

[[[(x*+y* +2%) dx dy dz = i (r*) r*sin@ dr do dg¢
5

NN Nl— = W]~ oY%

oty oct—Y O‘—;S’ SN oY
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7  Evaluate J. ” \/ - ! — dx dy dz through the volume of the positive octant of the sphere
l-x"—y -z

x2+y2+22£1.

Changing to spherical polar coordinates by the relations x =rsinf@cos¢, y =rsinéfsing, z =rcosf where

OSrSI,Osesg,Os(/ﬁs% and dxdydz = r*sin0drd0d¢. Also x*+1*+2° =12

1
dx dy d. Let
Hj\/l_xz_yz_zz T i:sint
33 dr = cost dt
:i ,zf,lf VzSiH@drdegj whenr=0,t=0
0 0 o N1-=r 7[

whenr=1t=—
2

2 : 2
1 Ginf sin cost dt dO dg J1-r7 =1-sin’¢ = cost
cost

Il
S 0 [y
O 0 | N
O 0 [N

sin’¢ sin@ dt d6 d¢ ZA

Il
S 0 [y
S 0 [ N
S 0 | N

NN

sin@ do d¢

Il
S o |y
O 0 [ N
N | —

<Y

[—cos 9]? d¢

Il
NGRS
O 0 |y

W

[0+1] dg

BN N
l\)|§ O o [N

356 | Page
https://doi.org/10.5281/zenodo.15288481



2 2 2
8 Evaluate J‘”\/l—x—z—;;—z—z—z dx dy dz where V is
v a (&

2 2 2
z
+5+—5<1

:}N| =
%<

c

Let sz\/p;‘—i—z—z—i—z dx dy dz
v

{Refer the substitutions given in (i)}. Then

1= J.JJ\/I —u’> —v —w abcdudydw ....(1)
{changing to spherical coordinates}

abeN1—r* r*sin dr dO d¢

O ==y N
© —

{Refer the substitutions given in (2)}. Then

abc cost sin’t sin@ cost dt d0 d¢

O ey N
O o |y

sin@ | cos’tsin’tdt dOd¢

I

Q

S

9
o'-—.'g’
S =
O 0 [N

1.1 =

2z
— ab sing ~—Z do d
¢ C! 422 109

O ey

2z

:%.abc ! (—cosO) dg

2r
=%.abcj (1+1) dg

0

27
=—abc 27 -0
16 ( )

2
T

=-—abc
4

a x, ’Z u v w
g=2Aorz) Yoo Y
o(u,v,w)
u ZV Z\’l
a 0 0
=0 b Ol=abc
0 0 ¢

Changing the integral (1) to spherical
polar coordinates by the relations
u=rsin@cos@, v=rsin@sing, w=rcos@
where

0<r<,0<OL 7, 05¢<L2r and

dudvdw = r’ sin 0drd 0d ¢

Also u®+v +w? =r.

Let
7 =Sint ............ (i)
dr = cost dt

when r=0,t=0

when r=1,t:Z
2

V1= =1 =sin?¢ = cos?
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Exercise

1 Evaluate ”J' z’dxdydz , by changing to cylindrical coordinates, taken over the volume bounded by the

surfaces x° +y> =a’, x’+y* =z and z=0.

2. Find the volume of the portion of the cylinder x” +)* =1 intercepted between the plane z =0 and the

(-

(Hint: first change the variables to get a sphere and then spherical polar coordinates)

paraboloid x* +)° =4—z.

[\S]

2
3

3 Find the volume of the solid surrounded by the surface (fy +(%j
a

a a”—x a —x -y
4 Evaluate j I j xyz dz dy dx by transforming to spherical polar coordinates
0 0 0

5 Evaluate ”_[ z*dxdydz , by changing to spherical coordinates, taken over the volume of the sphere

X4y +z7 <1,

Evaluation of Mass

(i) Consider a plane lamina of area 4 with density at any arbitrary point P(x,y) is p= f(x,y).
Then its total mass M is given by M = _[ j p dxdy .
A

In polar form, M = ” prdrdf.
A

(ii) Consider a solid of volume J with density at any arbitrary point P(x,y,z) is p= f(x,y,z2).
Then its total mass M is given by M = H_[ p dxdydz .
Vv
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1 Find the mass of the plate whose shape is the
2 2

3
astroid y_2 =1, given that the density of the
a3 b3
laminais p=kxy.

Required mass = 4 (mass in the first quadrant)

In the region OA4BO,
varies from 0 fo y,

xvaries from 0t a and y

Mass = 4]1. _[ p dy dx

3
=2kb jasm 9(1 sin 9) 3asin*@cosb d6
0

= 6ka’b* |sin 9 cos <9 * cosO do

fon
0
5
= 6ka’b* _[sm Gcos’ 0 do
0

— 6kaB? 42.6.4.2 }
12.10.8.6.4.2

_kazb2

-~ 20

From the given curve

2 2
y3 1 x3
2T T2
b3 a’

[FSRR )

=)

Put
x=asin’ 0, then dx=3asin’Ocosb dO

when x=0,0=0

when x =a, a=asin’ 0, ie. 1=sin0, ie. 6’=5
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2  Find the mass of the plate bounded by the curves
yv=e,y=0,x=0 and x=1, whose density varies as the
square of the distance from the origin.

Given that density p = k(x2 +y° )

Mass:j. ]. p dy dx
0

0

k

S e —

J. x>+ dy dx
0

37
x2y+y— dx
3 0

)

xe" +——|dx
3

Il
=
S S

Il
S
S S

Il
b
| O ——

e3x
xlet + 3 dx

=k | (x*)(e)—(2x)(e") +(2)(e") + ﬂ

r 1
2 x kY X e3x
=k|xe" —2xe" +2e" +
9 0

k [e—2e+2e+£—2—l:|
9 9

f[10e_ 1]
9 9

Let P(x,y) be any point in the plate.
Therefore the distance from the origin O

to Pis OP=\/(x—0)* +(y—0)* = x> + 7

But density p varies as the square of the

above distance. Therefore p = k(x2 + yz)

In the region, y varies from 0 to ¢* and x
varies from 0 fo 1.
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3 Find the mass of the area bounded by the curves 2
y=x" and x=y*, given that the density of the lamina is

p=k(x2+y2).

Ly |y
-yt |dy
1
yS
5

https://doi.org/10.5281/zenodo.15288481

(0.0)

and y varies from 0 7o 1.

In the region, xvaries from 3y’ to \/;
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4 Find the mass of the plate which is inside the circle
r=2acos@ and outside the circle r=q, if the density

varies as the distance from the pole.

Therefore required Mass
M=([ pradrdo
A

2acos@

M=2E j o7 drd@

2acos@

:2ki j ¥ dr do
0 a

% ;/'3 2acosé
=2kj {—} do
0 3 a
2k 3 3 3 3
:—I 8a’cos’ 0 —a’ do
3 0
33
=2ka I 8cos’@ —1d6
3 0
kd’ 3
= ka I §cos36’+ﬁcos9—1d€,
3 4 4 4

" c0s30 =4cos’ @ —3cos b
I ]

3 . z
:2ka §Sm39+%sin6’—9 3
3 14 3 4

0

Y 7
==
3
( P(r.6)
x
K (.0 (2a0) =0
r=a r=2acosf

Since the distance of any point P(r,8) from

the pole is r, the density at that point is
given by p = kr, k is proportionality

constant.

Also the shaded portion is symmetry about
the initial line #=0. Hence the required
mass is twice the mass of the area above the

initial line.

For the region above the initial line, » varies

. s
from a to 2acos@ and @ varies from O fo g

https://doi.org/10.5281/zenodo.15288481
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5
Y

planes and the plane > +
a

is p=kxyz.

We know that

_ka’ Z(I_ET
2 0 _2 c

k_J »op 2 (1_5
24012 4 3 c

+Z=1 , given that the density of the solid

C

Find the mass of the tetrahedron bounded by the coordinate

(0,0,0)

A(2,0,0)

The tetrahedron OABC'is
bounded by the planes

x=0,y=0,z=0& 2 +2+Z=

a b c
Here xvaries from

0to a[ —X—Ej and y varies
b c

from 0 fo b(l—ij and z varies
c

from 0 ro ¢
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kazsz‘- [l"j
24
2 2%
J. csin 0 —sin 9) 2c¢sinf@cos @ do
24
21.2 2%
_ka'be .[ sin39(cos2 6?)4 cos@ do
0
ngbZCZ%

jgfemfeda
0

_ka2b202 2.8642
12 12.10.8.6.4.2

ka’b*c?
720

6 Find the mass of the solid bounded by the planes and

the planes y=0,z=0and z=h and the cylinder
X+y =ad,if p=hyz.
We know that
a a*-x> h
Mass:'[ j j p dz dy dx
a 0

h2 a a”—x
:kTJ. I vdy dx
—a 0
s a 9 aZ_XZ
:kh_J‘ {y_} dx
2 Y 2
a 0
W1
:k——J. a® —x* dx
227
R 1
=k ——.2j a* —x* dx, "ra*—x* is even
22 4
2 374
:kh_ [Cﬁx_x_}
2 3,
2 3 2.3
S P B R
2 3 3

Put z=csin’ 6, then
dz =2csinfcosf db
when z=0,0=0

when z=c, ¢ =csin’ 6,

ie. 1=sinb,

ie. 0=2
2

e
( z=h_\
"'--.______ _/

The solid is bounded by the planes
v=0,z=0and z=h and the cylinder

X +y =a’.
Here xvaries from —a to a
Here z varies from 0 fo A

and y varies from 0 fo \a’ —x’

(semi cylinder)
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Moments and Centers of Gravity of Plane Regions

(i) Let R be a vertically or horizontally simple region. The moment A of R about the x—axis and the

moment M of Rabout the y—axis are defined by

MX:” vdA and My:ﬂ xdA
R R

(ii) If R has positive area 4, then the centre of gravity (centre of mass or centroid) of R is the point
(x,¥) defined by

by

” xp dxdy ” yp dxdy
- "1 |
B T
A A
J.J‘ rcos6 p r drdd ” rsin@ p r drd@
In polar coordinates X = -4 J-J- > drd0 and y=-4 J'J' prdrd0
4 A

(iv) The centre of gravity of a solid of volume } having the density p = f(x,y,z) is given by

[V wodsivdz [[[ o dayz [[[ =p dxdy:

to ([T dvdyaz a (I o dvdya: and = = m b dxdvdz
14 V 4

3

365|Page
https://doi.org/10.5281/zenodo.15288481



1 Let R be the plane region bounded by the line y = x and the parabola y=2-x’. Find the
moments of R about the x and y axes and determine the centre of gravity of R .

Solving y=2-x" and y = x, we get the points of
intersection.

x=2-x

¥ +x-2=0

(x+2)(x-1D)=0

x=-2,1

SLy=-21

i
—
<
=
&

5 3
LY AR
2 53],
:l[1+l_i+g 2_2}
2 5 3 5 3
_9
5

CG
(11)

R
—
=
S
&

Il
b —y—
\S]
=
|
=
|
=
38
&

= l—l———4+4—§
4 3 3
__9
4
Hence
M
)_c:—y:——x%:—l and
A 9 2
- M, 9 2 2
y: =—X—=—
A 5 9 5

366 | Page

https://doi.org/10.5281/zenodo.15288481



2 Find the centre of gravity of a lamina in the form of
2 2

x3 y3

=tz

a* b}
density of the lamina is p=kxy.

a quadrant of asteroid =1, given that the

The point of centre of gravity is given by

H xp dxdy

yp dxdy

XZW and y -”‘
X

! P y

_ 4
4 IJ. p dxdy
A

P 3
asin’ 9.{1 —(sin3 0)3} 3asin*Ocosb dO

sin’ 6’.[1 —sin? 0]3 cos® do

212
_ 3ka'b sin’ @.cos’ @ d@

OV [y O 0|y

3ka®h® 42 642

2 '12.10.8.6.4.2

= Lkazbz
80

2 2 2 2
y3 x3 x3 y3
—=l-= — ===
b? a? a? b?
2
2 2 3 2 2 3
v =b3 1—(£j x3=a’ 1—(Z
a b

|
0|

I
=

3
2 2
y=>b 1—(£j3 =y, X=a 1—(2j3
a b

For the area OABO,
x varies from 0 to a y varies from 0 fo b

y varies from 0 fo y, x varies from 0 fo x,

Put
x=asin’ @, then dx =3asin’*OcosO d6
when x=0,0=0

V4
.3 . . .
when x=a,a=asin’ 0, i.e. 1=sinb, i.e. 925

If
y=bcos’ 0, then dx=-3bcos’Osiné db

when yzO,Hz%

when y=b,b=bcos’ 0, ie. 1=cosb, ie. 0=0
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=—| X’y dx

3

lj X2 1—(%3 dx
2 a

0

2

2 2 3
_kb” a2sin69.[l—(sin39)3} 3asin®Ocos b do

O o [N

3 2%
- 3]“;[) I sin® c9.[1—sin2 9}3 cos@ db
0
3 2%
_ 3ka'h J sin® @.cos’ 6 dO
0
_3ka3b2 7.53.1 64.2
2 15.13.11.9.7.5.3.1
= chsz
2145
_  8ka’b’ 80 128a
Hence x = =

X =
2145  ka’b®> 429

2

cos® 0.[1 —cos’ HT siné do

3
'[ cos® O.sin” 0 d6

0

B 3ka’b’

_3ka’®®  7.53.1 6.4.2
2 15.13.11.9.7.5.3.1

8
2145

ka’b’

8ka’h® 80 _128b
2145~ ka’h* 429

Hence y =

https://doi.org/10.5281/zenodo.15288481

20 27
__ka j bzcosf’¢9.{1—(cos3 49)3} 3bcos’ @sin @ db
2
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3 Find by double integration, the centre of
gravity of the area of the circle x* +)° =4’ lying
in the first quadrant.

The point of centre of gravity is given by
.U xp dxdy ” yp dxdy
X and y

=4 -4 0000
* H p dxdy 4 IJ. p dxdy
A A

Since the density of the lamina is not given, it can
be taken as p =k, a constant.

[[ paxay=k[ [  dyax
A 0

0

:k]l. a’ —x* dx
0

_ ) .
=k gxlaz —x’ +%Sil’l_l f}

B |[Ola]

From the given curve

2 2 2 . 2 2
yi=a —-x, ie. y=Na —x

For the area O4BO,

x varies from 0 to a & y varies from 0 to \Ja* —x°

Also, from the given curve
x’=a’—y?, ie x=+\a -y

For the area OABO,

y varies from 0 to a & xvaries from 0 to \Ja’ - y°

_kra
4
a ooy o i
” xp dxdy:kJ. J. x dxdy “ yp dydx=kJ- J. y dydx
A 0 0 A 0 0
a x2 a’—y? ka yz a®—x .
A d - Y
THE 5]
:gj‘ az—yz dy g‘a[ az—xz dx

https://doi.org/10.5281/zenodo.15288481
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4 A plate in the form of a quadrant of the
2 2

ellipse —2+%:1 is of small but varying

thickness, the thickness at any point being
proportional to the product of the distances of
that point from the axes. Find the coordinates
of the centroid.

The point of centre of gravity is given by
H xp dxdy ” yp dxdy

4 4

[[ o dxdy [[ o dxdy

A A
Since the density of the lamina is proportional to
the product of the distances of the point from the
axes, it can be taken as p =kxy, kis a constant.

X = and y=

W
H P dxdy=kj I xy dxdy
A 0 0
ey
L
0 0

2

kKt oa, o,
21 B UL
0

Bl (o,b)

o A(a,0)

From the given curve

y X . y a —Xx

b2:1_ 7 l.e.b—z_ a2

V2 =b T e y:é /az_xz
a

For the area OABO,

xvaries from Ofa & yvaries from
b
0to =a*—x*
a
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bF baT
H yp dydx:k'[ J. xy” dydx ” xp dydx:kj J- x*y dydx
A 0 0 A 0 0
a 3 ; az—xz a yz E az—xz
:kj.x{y—} dx :kj‘xz{ } dx
0 3 0 0 2 0
a 3 3 ka b2
:EJ. x—3(a2—x2)2 dx E xz—z(az—xz)dx
o 4 0 a
kb3 la 2 2 2 2 k b2 T 2.2 4
=——— a —x )2 dl(x =—.— ax —x")dx
Mz{ (a*=x) d(x*) 2 f ( )
s | kB[ ,x X a
2_ 2\2 =— —|qg ———
k1]’ 2 az{ 305
34°2 5 ’
2 0 k bZ |:a5 a5:|
__Eilg [0_ 5:| 2 a 3 5
3425 s
_k 24
_55_31_615 2°d* 1
34’2
¢ kb
kb 22 15
_2'a 1_
a’b? 8 &a
Hence x = X—=—
ka*b’ 15 ka’b- 15
15
Hence _—ka2b3x—8 _8
Y75 Tk 15

https://doi.org/10.5281/zenodo.15288481
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5 Find by double integration, the centre of
2 2

gravity of the area of the ellipse % + % =1 lying

in the first quadrant.

The point of centre of gravity is given by
H xp dxdy H yp dxdy

*o j._[ p dxdy and y = }J. p dxdy
A A

Since the density of the lamina is not given, it can
be taken as p =k, a constant.

=

a7
I pdxdyzki b [ dxay
A 0 0

=kz %«/b2 —y? dy

b

aiy 2 2 b’ .1y
=k—|=\b*-y" +—sin" =
b2V T T bl
72
:kg b—sin’1 1}, o sin”' 0=0
b2

Bl (o,b)

From the given curve

For the area OABO,
xvaries from Ofa &

0 to é\/a2 —x?

A(a,0)

yvaries from

2 2 2 2 2
b —
x—2=1—y—2, ze.x—z— Zy
a b a b
b2_ 2
x'=a’ bzy , ie. x=—+/b" =y’

For the area OABO,
yvaries from Ofb &

0to %«/bz —y?

https://doi.org/10.5281/zenodo.15288481
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b %\ébzfyz . giaz—xz
H xp dxdy= k_[ J. x dxdy ” yp dydx= kI I v dydx
A 0 0 A 0 0
b 2 % b?-y? a 2 ﬁﬁ
=k {—} dy = k[ {y—} dx
0 2 0 0 2 0
kt o 2 2 ¢ 2 2
:5.([ b_2(b —y)dy ——'([ ?(a —x)dx
ka | 7 k[, 2
=—.— bzy—y— =—.— a’x——
2 b7 | 3, 2a | 3,
2 3 2 [ 3
zﬁa_z pr b :Eb_z N
2 b7 | 3 2a | 3
W2 kb2
2 b3 2 a3
B ka’b 3 kab*
3 3
_ ka’b 4 4a _ kab® 4 4b
Hence x = X =— Hence y = X =—
3 kmab 31 3 kmab 31
6 Find the centre of gravity of a solid of volume J/ bounded by the circular cylinder

x> +y*> =4; z=0, z=4 whose density is given by p=20-z".
z

The centre of gravity of a solid is given by
[[] xp dxdydz [[[ vp dxdye: [[[ zp axdya: N |
_ _ %

¥ (I dxdya a (I dxdya and %= jyjj 0 dxdydz
4 V V

2

Let us use cylindrical coordinates to evaluate certain integrals:

2
Changing to cylindrical polar co-ordinates by the relations 2 weriagz=0
x=rcos@, y=rsinf and z =zthe region {xz +y2 <4;,0<z< 4} y
is transformed to the region
{(r,H,z):O <r<2,0<0<L27,0<z< 4} . Here dxdydz is to be
replaced by r» dr d6 dz.
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jlj o dxdydz

4
IZO—zzr dz dr do

0

” J pz dxdydz
V

I
o'—.g’
O C—

3 4
F[ZOZ—%} dr do

0

F[SO—%} dr do

Sl N O O
o*—.g) o'—.'g’

o'—,g’ Sl NV O O ———

27 2 2
_176 [ [ rarae =96 [ [ rdras
3 0 0 0
2z 2 2 27
_176 I {r_} d6 =96J' [’”_}
3 0 2 0 0 2
2r 27
zﬁxzj 40 =96x2 [ do
3 0 0
—@xz[zn—o] =96x2 [27-0]
3 — 3847
_T04
3

m yp dxdydz

j j [ r dxdvdz

7 Find the centroid of the tetrahedron bounded
by the coordinate planes and the plane
x+y+z=1, given that the density at any point

varying as its distance from the face z =0.

We know that the distance from the face z=0 to any
point in the tetradedron is p =z, k is a constant.

The centre of gravity of a solid is given by

j [[ xp dxdydz

m p dxdydz

(20—22)2 ¥ dz dr dO

20z z !
r
2 4

r[160—64] dr do

} dr do
0

Also

Ji” py dxdydz
14

4-y* 2

I I(20—22)y dy dx dz
,M -2

=0, since the integrand y is odd

I
O ey

m xp dxdydz 384z . 18

m o ddydz 104z Tt

The tetrahedron OA4BCis bounded by the planes
x=0,y=0,z=0& x+y+z=1

Here xvaries from 0 to 1—y—2z and y varies from
0to1-z and z varies from 0 fo 1
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jﬁ:j yp dxdydz J]J px dxdydz :j. T 1_1:2 px dx dy dz
p dxdydz

(=]
(=1

1
IJ.J. zp dxdydz :_([
and zZ =—%

[ l [ p drdyd:

1 1-z 1-y-z

[[| paxdyaz=[ [ [ padxdydz i
4 0 0 0 :5

2k

:kjlj e zzdydz
0 0

—y=
.[ k z dx dy dz
0

LoI- 2x3
:kj I (z zy—z )dy dz 1
°0 :EI z(1-z)’ dz
, ) - 69
=k_[ zy——Z—zzyJ dz
0 0
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11—z l-y—z 1

j pz dx dy dz ”f py dxdydz :I I
0 vV 0 0

Il

=
S —
o'—.'\T
——
w N,
L
&
N

S

Sy

Il

=

(yz—yzz—yzz)dy dz

0

2 3 2 2\

yz yz yz dz
2 3 2

0

—~~~
o~
=
|
N
N
|
<
—
S
&
I
bl

|
w | =
[S) ——
e N .
—
~
=
|
N
p—
[
<
| — )
;/’_‘
&
ISW
Il
b

I
bl

Ol — O~ O —— = O ——

(1—2)2—2(1—2)3—%(1—2)2612

SR IN

%(Z-i—Zs—222)—§(Z—Z4+3Z3—322)

—_~~
—
|
N
~
W
1
S —
Il
by
[ S

—%(z2 +z* —223)d2

11 1 2) 1(1 1 3 3
k= =+——=|—=| =—=+=>—=
{2[2 4 3] 3(2 5 4 3)}
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8 Find the centre of gravity of the positive octant of the sphere of volume J given by
x*+y" +z* =a’ whose density is given by p = kxyz .

zA
The centre of gravity of a solid is given by
J.” xp dxdydz ”J. yp dxdydz J.” zp dxdydz
, and zZ =%
j ﬂ p dxdydz j j [ p drdydz [[| p dxdydz
V
Let us use spherical coordinates to evaluate the integrals: ;
Changing to spherical polar co-ordinates by the relations
x=rsinfcos@, y=rsin@sing and z=rcoso the region 4
X +y +zi=a’ is transformed to the region
{(r,0,¢):0 <r<a,0<0< % 0<g< %} Here dxdvdz is to be
replaced by #*sin@ dr d0 d¢.
f“ xp dxdydz =k I I I x’yz dxdydz
Vv
R
=k [ [ [ r*sin’ @cos’ g.rsinOsingrcosd rsin0 dr dO dgp
0 0 0
R
=k [ [ [ sin'@cosOsingcos’ ¢ r* dr d0 dg
0 0 0
% % »7 4
=k I I sin* @cos @sin gcos’ ¢ [—} do d¢
0 0 7 0
EE R . 2
:k7£ ‘([ (sm Hcosﬁ) singcos” ¢ dO d¢
13
%J 53?')11 singcos’ ¢ d¢
. 5.3.
a1}
=k— — | singcos’¢ d
3 j peos’ ¢ dg
Rl
7 531
105
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m o dxdydz =k j j j xyz dxdydz
4 4

S o [Ny
O e

Il Il

by b
O ——t0 | N S 0 [y
S o [Ny
O e

Il

bl
S o [N
O 0 |y

Il

bl
c\|Q
S 0 [N
O 10 | N

6 a
sin’ @ cos @.sin ¢ cos ¢ {%}

rsin@cosg.rsin@sing.rcosd r’sin@ dr d0 dg

sin’ @cos@.singcosg 1’ dr dO d¢

do d¢

0

(sin3 0 cos 9).sin¢cos¢ do d¢

sin2¢ d¢, - sin2x=2sinxcosx

‘rcost=-1,cos0=1

a6% 2
=k— | — singcosg d
6{ 3.1 peosg dg
.
:ka_ZlJ‘
329
_ka_621__cos2¢}2
6 32| 2,
. _
@211 1]
6 3212 2
18

_ J.” xp dxdydz ka’ 18 6a

T m o dxdydz 105 ka® 35
4

By symmetry of the solid w.r.t the axes, y =

https://doi.org/10.5281/zenodo.15288481

z

6a

35
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Moment of Inertia

A rigid body rotating about an axis has always a tendency to oppose
its state of rotation exactly in the same way as the mass of a particle
oppose the tendency to its state of translatory motion. This property
of a rotating body is called its Moment of Inertia.

A particle of mass m situated at a distance r from a given axis, the
product mr’ is called the moment of inertia of the particle about the
given axis.

In case of a rigid body where there is a continuous distribution of
matter, the moment of inertia about a given axis is obtained by
integration.

Moment of Inertia of Plane Lamina: Let 4 be the area of a plane lamina and p its density. Then the

moment of inertia of the lamina about x—axisis givenby / = H oy’ dxdy.
A

Similarly, the moment of inertia of the lamina about y—axisis givenby / = J.J- px’ dxdy .
A
Moment of Inertia of a Solid: Let // be a volume of a solid and p its density. Let P(x,y,z)be a point of
the solid and its distance from x—axis is /y*+2z°. Then the moment of inertia of the solid about the
x—axis is given by I = _m,o(y2 +22)dxdydz. Similarly the moment of inertia of the solid about y —axis
14

and z—axis is
1, = I_Up(xz + Zz)dxdydz and I, = ”_[p(xz +y2)dxdydz respectively.
v v
To evaluate the moment of inertia about a line other than coordinate axes, the following theorems may be

useful.

Theorem of Perpendicular axes: If / and I, be the moments of inertia of a plane lamina of mass M
about two axes OX and OY atright angles to each other in its plane, then the moment of inertia /, of the

lamina about the axis OZ perpendicular to the plane of the lamina is givenby 7. =1 +1 .

Theorem of Parallel axes:

[ A
If I be the moment of inertia of a body of mass M about any axis | ————
CD and I, its moment of inertia about a parallel axis 4B passing
through the centre of gravity of the body and a, the distance between AN ] R
two axes, then I =1, + Ma’

-—’F’__—’_

D B
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Solved Problems

1 Find the moment of inertia of an area

bounded by the lines X +% =1, x=0, y=0 about y

a
the z - axis. \ B(0,b)

Since the density is not given, assume that p=k, a
constant.

The mass of the area is given by

M :” p dxdy
R
p 5t From the given curve
k[ [ dvay &
0
¢ a
=k [ Z-y)dy 12 e X0y
0 b b’ b
a 2y
=k— by—y— xX=a y’ ie. x=—(b-y)
b 2 ),
al., b
= kZ b - For the area OABO,
5 y varies from 0 to b & xvaries from 0 fo g(b -)
ab b
=k—.—
b 2
_ kab
2
Hence k = 2M
“ab
Moment of Inertia about x— axis is given by Moment of Inertia about y—axis is given by
I = ” py’ dxdy I, :H px’ dxdy
R R
PRI p b-y)
= I I y* dxdy zkj I x* dxdy
0 0 0

b
a 7(bv)

=k —(b-y)d b 3

!y L (b=y) dy k| [x_} i

4t o L3 0
=k [ (b)) _Ei (-

’ 34 b3

¢ by__y_

b\ 3 4
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4 4 b
e b__b_ _ka3 (b—y)4
b3 4 30| 4
ab’ 3 °
k= k a1
=—=.—.—|0-b
kbb132 3D 4[ ]
- ka1,
2M ab’ 3 4
:_bE (substitute k value) B ka’b
a =
Mb* 12
= 2M a’b ,
6 =——.——  (substitute k value)
ab 12
_Ma2
6

By perpendicular axis theorem, the moment of inertia about z —axis is given by

Mb" + Ma® = M(a2 +b2)
6

I =I1+I =

2 Find the moment of inertia of a quadrant of the
2 2 Bl (0,)
. X y .. ,
ellipse — + 7 =1 of mass M about the z — axis, if
a
the density at a point is proportional to xy.

Given that density p = kxy. The mass of the quadrant is
given by

o A(a,0)

From the given curve

2 2 2 2 2
b2 —
R
a b a b
b2_ 2
x’=a’ Y , lLe. ng b*—y?

bZ

For the area O4BO,
yvaries from Ofb & xvaries from

0t %«/bz -y’
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noTe Sy
=k y{—} dy
7]
k. a’
et R G
0
ka2 b
=—— | (P’y=)")ay
2b2-([ ( )
2 2 4P
kA gy v
2°b 2 4
_ka b b
202 4
_kazb2
8
SM
:azb2

Moment of Inertia about x— axis is given by Moment of Inertia about y —axis is given by
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Ix :J.I pyz dxdy Iy = I pxz dXdy
! R
b %bz_yz b %b27y2
=k-[ .[ Xy dxdy :k.[ .[ yx* dxdy
0 0 . )
( x’ 7 b x* %W
:kjﬁ{_} dy ij‘y{—} "
0 2 0 }
k b 3 a2 2 2 k b a4 ) . 5
2! b ( ) 4{ ; ( )
ka2 b 2 3 5 ka4 b 1 , ) ) )
_ . h
Ay S kat 1| (-
20 4 6 LR
i ’ 402 3
ka*[b* b° 0
EENTH I 4
2 b | 4 6} :E'a_. 1 oS
] 4 p* —3><2|: }
2 6
:g'z_z ]13_ ka1,
4°p" 6
274
:ka24f _ka'b?
24
214
= 85\42'61 b (Substltutek vah/le) 8M a4b2 '
a’br 24 :2—b27 (substitute k value)
a
2
:A/[3b _Ma2
3

By perpendicular axis theorem, the moment of inertia about z —axis is given by

Ma2+Mb2_M

I.=1+1 = —(a’+b’
Y 3
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3 Find the moment of inertia of a solid right circular z

cylinder about its axis and about a diameter of the base.
y \ /—:

First let us find the mass of the cylinder. [~

a a® x> h
Mass = p dz dy dx

—a a'!-xz -([ -a 7 _\ a *

) W+ =atz=0
=p| [ havax y
I Let the cylinder is defined by

a X4y =a’;z=0,z=h
= p.h I 2\a® —x* dx

Here xvaries from —a to a and

y varies from Na*—x* to Na*—x*

=2p.h 2 I a’—x* dx, since the integrand is even and height varies from z =0 0 z =

x5 d . x| Let ¥ be the volume, M be the mass
=4ph| ~Na'-x’ s 1_} and p be the density.

= 4ph %sin’ll , sin"0=0

a r
=4ph|—sin'1|, sin'l==
r 2 2

6127Z'
= 4ph =
Py

= phra’

Hence, p =

2
hra

To find moment of inertia of the cylinder about its axis( z — axis)
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”‘J.,o(x2 + yz)dxdydz

:j. I jﬂ p(x2+y2)dzdy dx
a 0

—2phj a* -x* dx+§phj de
—4phI Na* —x dx+4phJ. de

[putx=asm6’,x=0:>0=0,x=0:>6’=7z/2, a’x=acos€]

3

3 s
a’sin’ O\a’ —a’sin* @ acosf d9+:phJ‘ (az—azsinze)zacosé’ do
0

II
k‘

3

3 5
a*sin® G1—sin’ @ cosb d9+§ph I at (l—sin2 6?)2 cosé db
0

Il
N

e
Ryl

SV [N O =[N

4

4
ha

sin®@cos* 0 dO +— 3 pha cos* @ db

2o 1355 ]

V4
=7 oha* +Z pha'
4'0 4p

O 0 | N

i
o |3
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To find moment of inertia of the cylinder about its diameter of the base(say y —axis)

I, = J‘”,o(x2 +z° )dxdydz

:j‘ _[ jp(x +z)dzdydx
—a _Ji2-¢2 0
a @ —x* h
:pj I [xzz+%3j dy dx
—a _JP2- 2 0
=p]£ a]:xz ( 2h+—3] dy dx
pj. ( 2h+—]2 a’—x*dx

:2phj xZ\/az—xzdx+§ph3j. Na® —xdx
:4ph]1. xleaz—xzdx+§ph3:‘|£ a’—x"dx
0 0

[put x=asin0, x=0=6=0,x=0=>0=7/2, dc=acosb|

Vi

Il
~

D
=

o'—.wm O 0 | N

1

4
ha

cos’ 0 do

ot—u N

sin” @ cos’ 6’d9+3,0h3 2

2
o]
|4
|:422:| [22:'
:—pha4+ﬂph3a2—
4 3 4

4
=phdZ|a®+= 1
p“4{“ 3 }

M nat 3a’ +4h°
4 3

} . M
, since p= 5

hra® hra

=%[3a2 +4h* |
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2 1
a’sin*O\a* —a’sin® @ acosd d6?+§ph3j (a2 —a’sin’ 9)2 acos@ db

3
a*sin® @\/1-sin’ @ cos@ dO+— phj 1 sin 9 cosé do
0
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4 Find the moment of inertia of the homogeneous solid bounded by the
cylinder x* + y* = a*; z =0; z=h about the x— axis.

We know that the mass and the density of the given cylinder is M = phra® p = M
a

the previous example. Now let us find the moment of inertia about x— axis.

I = J”p(yz + Zz)dxdydz
vV

a \/azj h
:I J. I p(y2+zz)dz dy dx
—-a ,ﬁ 0
a 2 h
= pj I yzz+%3 dy dx
-a .\/? 0
:pjf ]:Xz y2h+h?3 dy dx
a Ni@_* e
= 2p_[ J‘ [yzh +?j dy dx, ' integrand is even in y
—a 0

3 3

(az—xz)E dx+4ph?jj

2 2
a —x" dx

[put x=asin®, x=0=60=0,x=0=0=7/2, dx=acosf]

:éphi‘ (az—azsin26’)zacost9 d9+§ph3j; NJa’ —a’sin® @ acos do
_4 h.72|i 4(1—sin29)300s0dt9+ h% (l—sinzﬁ);cosedé’
R 37
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387 |Page



Exercise

1 Find the mass of a solid in the form of the positive octant of the sphere x* + y* +2z° =9, if the density at
any pointis 2xyz.

2 Alamina is bounded by the curves y = x> —3x andy = 2x. If the density at a point is given by kxy, find
by double integration, the mass of the lamina.

3 Find the mass of a lamina in the form of the cardioid r = a(1+ cos @) whose density at any point varies
as the square of its distance from the initial line.

4 Find by double integration, the centre of gravity of the area of the cardioid » = a(1+cos )
5 Find the centroid of the area enclosed by the parabola y* =4ax, the x-axis and its latus rectum.

6 The density at any point of a lamina is k(x+ y). The lamina is bounded by the lines
x=0,x=a,y=0,y=>b. Find the position of centre of gravity.

7 Find the moment of inertia of a hollow sphere about a diameter, its external and internal radii being 5
mtrs and 4 mtrs respectively.

8 Find the moment of inertia of the area bounded by the curve > =a” cos 26 about its axis
9 Find the moment of inertia of a circular plate about a tangent.
10. Find the moment of inertia of the area y =sinx from x=0 fo x =27 about x-axis.
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Integration Formulas:

Trigonometric Forms

) coSs ax
Ism axdx = —
a
sin ax
jcos axdx = +c
a

Itanxdx=logsecx +c
jcotxdx=logsinx +c

jsecxdx =log(secx +tanx) +c
cosecx dx =—log(cosecx +cotx) +c
sec’ xdx =tanx +c¢
cosec’ xdx =—cotx +c
secxtanxdx =secx +c

cosecxcotxdx =—cosecx +c¢

[ SN S SU— S— S— S —

cosecxcotxdx =—cosecx +c¢

Heperbolic Forms

Isinhxdx =coshx +c¢
Jcoshxdx =sinhx +c¢

Itanhxdx =logcoshx +c¢

Forms Involving a2 - x2

J-l 1 x+ac

> 2a’=—1g

a —x 2a X—a

dx =sin™" —+c

| —
2
I a’—x* a’ng’\/az—x2 +%sin_1£+c

a

Inverse Trigonometric Forms

j sin' x dx = xsin” x++/l—-x% +¢
j cos x dx=xcos ' x—+1—-x* +¢

_[ tan”' x dx = xtan"' x —%log(lerz) +c

Exponential and Logarithmic Forms

ax

e
J. e dx = +c

a

J.a"dx:a“ log.e +c

_[ la’x =logx +c
X

_[ logxdx =xlogx—x +c¢

Forms Involving a2 + x2

1 1 X
_[ 5 2a’x=—tan1—+c
a +x a a

1 )
J.—abc:smh_lz :log.;[er\/a2 +x2}
Va' +x° a
2
J. a’ +x° dx=§\/a2 +x? +%sinh_1£+c

a

Forms Involving x2 - a2

_[ ! dx—ilogx_a +c
)cz—a2 2a X+a

dx =cosh™ —log[x—i- xz—azJ

= =
2

I X’ —a dx—2\/x —a —%cosh g

a
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Other Formulas

jkdleoc+c
n+l
I x" dx = +c
n+l
n+l
I (ax+b)" dx = 1lax+b)™ |

a n+l

j \/)62):_7 dx =x*+a* +c

C

Special Formulas

Ixe_xdlel

0

I e x"dx =In

0

2 ) )

J- sin”’@cos”9d¢9=(m D(m-=3)....1(n—-1)(n-3)....... lz,ifm,niseven
0 (m+n)(m+n-2)(m+n—-4)........ 22

j.f(x)dx:O if f(x)is odd
_Tf(x) dx:Z_a[f(x) dxif f(x)is even

[ fdv=2[ fG)dxif fQ2a=x)=f()
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